首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The natural vibrations of a cantilever thin elastic orthotropic circular cylindrical shell are studied. Dispersion equations for the determination of possible natural frequencies of cantilever closed shells and open shells with Navier hinged boundary conditions at the longitudinal edges are derived from the classical dynamic theory of orthotropic cylindrical shells. It is proved that there are asymptotic relationships between these problems and the problems for a cantilever orthotropic strip plate and for a cantilever rectangular plate and the eigenvalue problem for a semi-infinite closed orthotropic cylindrical shell with free end and for the same but open shell with Navier hinged boundary conditions at the longitudinal edges. A procedure to identify types of vibrations is presented. Orthotropic cylindrical shells with different radii and lengths are used as an example to find approximate values of the dimensionless natural frequency and damping factor for vibration modes __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 5, pp. 68–91, May 2008.  相似文献   

2.
This paper is the result of an investigation on the vibration of non-homogeneous orthotropic cylindrical shells, based on the shear deformation theory. Assume that the Young’s moduli, shear moduli and density of the orthotropic material are continuous functions of the coordinate in the thickness direction. The basic equations of non-homogeneous orthotropic cylindrical shells with the shear deformation and rotary inertia are derived in the framework of Donnell-type shell theory. The ends of a non-homogeneous orthotropic cylindrical shell are considered as simply supported. The basic equations are reduced to the sixth-order algebraic equation for the frequency using the Galerkin method. Solving this algebraic equation, the lowest values of non-dimensional frequency parameters for non-homogeneous orthotropic cylindrical shells with and without shear deformation and rotary inertia are obtained. Calculations, effects of shear stresses and rotary inertia, orthotropy, non-homogeneity and shell geometry parameters on the lowest values of non-dimensional frequency parameter are described. The results are verified by comparing the obtained values with those in the existing literature.  相似文献   

3.
In this study, the torsional vibration and stability problems of functionally graded (FG) orthotropic cylindrical shells in the elastic medium, using the Galerkin method was investigated. Pasternak model is used to describe the reaction of the elastic medium on the cylindrical shell. Mixed boundary conditions are considered. The material properties and density of the orthotropic cylindrical shell are assumed to vary exponentially in the thickness direction. The basic equations of the FG orthotropic cylindrical shell under the torsional load resting on the Pasternak-type elastic foundation are derived. The expressions for the critical torsional load and dimensionless torsional frequency parameter of the FG orthotropic cylindrical shell resting on elastic foundations are obtained. The effects of variations of shell parameters, the exponential factor characterizing the degree of material gradient, orthotropy, foundation stiffness and shear subgrade modulus of the foundation on the critical torsional load and dimensionless torsional frequency parameter are examined.  相似文献   

4.
Free vibration of circular cylindrical shell with constrained layer damping   总被引:1,自引:0,他引:1  
Free vibration characteristics of circular cylindrical shell with passive constrained layer damping (PCLD) are presented. Wave propagation approach rather than finite element method, transfer matrix method, and Rayleigh-Ritz method is used to solve the problem of vibration of PCLD circular cylindrical shell under a simply supported boundary condition at two ends. The governing equations of motion for the orthotropic cylindrical shell with PCLD are derived on the base of Sanders’ thin shell theory. Numerical results show that the present method is more effective in comparison with other methods. The effects of the thickness of viscoelastic core and constrained layer, the elastic modulus ratio of orthotropic constrained layer, the complex shear modulus of viscoelastic core on frequency parameter, and the loss factor are discussed.  相似文献   

5.
应用分层壳理论并在壳厚方向彩二次插值函数推导出正交层合圆醉壳的动力学方程,并得出了简支层合圆柱壳自由振动方程的解,所给出的振动频率与三维分析的结果吻合良好,计算了前四阶模态对应的壳中应力,与第三、四阶模态对应的横向正应力与面内应力的比值远高于第一、二阶模态的应力比,计算结果说明,很高的横向正应力是高频动力响应中导致分层壳脱层破坏的一个主要因素。  相似文献   

6.
In this paper, the free vibration and buckling of laminated homogeneous and non-homogeneous orthotropic truncated conical shells under lateral and hydrostatic pressures are studied. At first, the basic relations, the modified Donnell type dynamic stability and compatibility equations have been obtained for laminated orthotropic truncated conical shells, the Young's moduli and density of which vary piecewise continuously in the thickness direction. Applying superposition and Galerkin methods to the foregoing equations, the buckling pressures and dimensionless frequency parameter of laminated homogeneous and non-homogeneous orthotropic conical shells are obtained. The appropriate formulas for single-layer and laminated cylindrical shells made of homogeneous and non-homogeneous, orthotropic and isotropic materials are found as a special case. Finally, the effects of the number and ordering of layers, the variations of conical shell characteristics, together and separately variations of the Young's moduli and densities of the materials of layers on the critical lateral and hydrostatic pressures, and frequency parameter are found for different mode numbers. The results are compared with other works.  相似文献   

7.
The influence of varying thickness at constant mass on the stress–strain state of orthotropic cylindrical shells with elliptic cross-section is analyzed by solving two-dimensional boundary-value problems  相似文献   

8.
The extensive use of circular cylindrical shells in modern industrial applications has made their analysis an important research area in applied mechanics. In spite of a large number of papers on cylindrical shells, just a small number of these works is related to the analysis of orthotropic shells. However several modern and natural materials display orthotropic properties and also densely stiffened cylindrical shells can be treated as equivalent uniform orthotropic shells. In this work, the influence of both material properties and geometry on the non-linear vibrations and dynamic instability of an empty simply supported orthotropic circular cylindrical shell subjected to lateral time-dependent load is studied. Donnell׳s non-linear shallow shell theory is used to model the shell and a modal solution with six degrees of freedom is used to describe the lateral displacements of the shell. The Galerkin method is applied to derive the set of coupled non-linear ordinary differential equations of motion which are, in turn, solved by the Runge–Kutta method. The obtained results show that the material properties and geometric relations have a significant influence on the instability loads and resonance curves of the orthotropic shell.  相似文献   

9.
Natural vibrations localized at the free edge of a semiinfinite, elastic, orthotropic, circular cylindrical shell of open profile are studied. The cylinder is hinged along the bounding generatrices. Dispersion equations are derived from the classical equations describing the dynamic equilibrium for orthotropic cylindrical shells. It is established that these dispersion equations and the dispersion equations for a semiinfinite orthotropic plate strip are in an asymptotic relationship. A procedure for analysis of the possible types of vibrations at the free edge of the cylinder is described. Approximate values of the dimensionless natural frequency and damping factor are determined for shells of different radii  相似文献   

10.
波纹壳是传感器弹性元件的一类重要形式,也是精密仪器仪表弹性元件中的一类重要形式。由于波纹壳形状复杂、参数众多、厚度薄,对其进行非线性分析非常重要同时也是十分困难的。本文考虑一种在传感器弹性元件中有重要应用价值的正弦波纹浅球壳体,将这种壳体视为结构上的圆柱正交异性扁球壳,根据Andryewa的思想,分别得到了正弦波纹壳径向、环向在拉伸、弯曲下的等价的四个各向异性参数;建立了正弦波纹扁球壳的非线性强迫振动微分方程;得到了正弦波纹扁球壳非线性强迫振动的共振周期解及幅频特性曲线。  相似文献   

11.
区别于一般圆柱壳,开口圆柱壳沿周向是不封闭的,因此具有四个边界,本文根据轴向梁式振动和轴向曲拱振动特性对各种端部与侧边边界条件下的壳体提出统一的位移振型函数,并根据哈密顿原理建立了材料参数与空间坐标相关的正交各向异性开口圆柱壳的动力变分方程,求出了不同材料属性下开敞圆柱壳固有频率与振型解的一般解析表达式,适用于任意边界条件下不同材料的开敞圆柱壳自由振动分析.  相似文献   

12.
Zihni Zerin 《Meccanica》2013,48(7):1557-1572
In this paper, an analytical procedure is given to study the free vibration of the laminated homogeneous and non-homogeneous orthotropic conical shells with freely supported edges. The basic relations, the modified Donnell type motion and compatibility equations have been derived for laminated orthotropic truncated conical shells with variable Young’s moduli and densities in the thickness direction of the layers. By applying the Galerkin method, to the basic equations, the expressions for the dimensionless frequency parameter of the laminated homogeneous and non-homogeneous orthotropic truncated conical shells are obtained. The appropriate formulas for the single-layer and laminated complete conical and cylindrical shells made of homogeneous and non-homogeneous, orthotropic and isotropic materials are found as a special case. Finally, the influences of the non-homogeneity, the number and ordering of layers and the variations of the conical shell characteristics on the dimensionless frequency parameter are investigated. The results obtained for homogeneous cases are compared with their counterparts in the literature.  相似文献   

13.
The stress-strain state of a shallow orthotropic shell with rectangular planform and thickness varying in two coordinate directions is studied. A refined problem formulation is used. Different boundary conditions are considered. A numerical analytic approach based on the spline approximation and discrete orthogonalization is developed. The stress-strain state of shallow orthotropic shells whose thickness is varied keeping its mass constant is studied Translated from Prikladnaya Mekhanika, Vol. 44, No. 8, pp. 91–102, August 2008.  相似文献   

14.
An approach is developed to solve stress–strain problems in a refined formulation for orthotropic cylindrical shells of variable thickness and noncircular cross section. It is shown, as an example, how the distributions of deflections and stresses depend on changes in the shell thickness at constant weight  相似文献   

15.
An approach is proposed for refined solution of stress problems for elastic systems consisting of coaxial shells of revolution. Transverse shear and reduction are taken into account. Multivariant calculations made for orthotropic cylindrical shells with elliptical end-plates allow us to analyze the influence of the semiaxis ratio and intermediate supports on the stress–strain state of the shell systems under consideration  相似文献   

16.
Abstract

In this paper, three-dimensional static and free vibration analysis of functionally graded graphene platelets-reinforced composite (FG-GPLRC) truncated conical shells, cylindrical shells and annular plates with various boundary conditions is carried out within the framework of elasticity theory. The main contribution of the present work is that formulation for free vibration and bending behavior of the FG-GPLRC truncated conical shell based on theory of elasticity has not yet been reported. Additionally, formulation and solution for cylindrical shell and annular plate are derived by changing the semi vertex angle in formulation and solution of FG-GPLRC truncated conical shell. A semi-analytical solution is proposed base on employing differential quadrature method (DQM) together with state-space technique. Validity of current approach is assessed by comparing its numerical results with those available in the literature. An especial attention is drawn to the role of GPLs weight fraction, patterns of GPLs distribution through the thickness direction, geometrical parameters such as semi-vertex angle, length to mid-radius ratio on natural frequencies and bending characteristics. Numerical results reveal that desirable static and free vibration response (such as lower radial deflection and higher natural frequencies) can be achieved by locating more square shaped GPLs near inner and outer surfaces.  相似文献   

17.
This paper reviews studies and analyzes results on the effect of discrete ribs on the dynamic characteristics of rectangular plates and cylindrical shells. Use is made of the vibration equations derived from the classical theories of beams, plates, and shells. The effect of Pasternak’s elastic foundation on the critical velocities of a structurally orthotropic model of a ribbed cylindrical shell is determined. Nonstationary problems are solved for perforated and ribbed shells of revolution filled with a fluid or resting on an elastic foundation and subjected to moving or impulsive loads. Results from studies of the behavior of sandwich shell structures under impulsive loads of various types are presented  相似文献   

18.
This paper reports the results of an investigation into the vibration of functionally graded cylindrical shells with flowing fluid, embedded in an elastic medium, under mechanical and thermal loads. By considering rotary inertia, the first-order shear deformation theory (FSDT) and the fluid velocity potential, the dynamic equation of functionally graded cylindrical shells with flowing fluid is derived. Here, heat conduction equation along the thickness of the shell is applied to determine the temperature distribution and material properties are assumed to be graded distribution along the thickness direction according to a power-law in terms of the volume fractions of the constituents. The equations of eigenvalue problem are obtained by using a modal expansion method. In numerical examples, effects of material composition, thermal loading, static axial loading, flow velocity, medium stiffness and shell geometry parameters on the free vibration characteristics are described. The new features in this paper are helpful for the application and the design of functionally graded cylindrical shells containing fluid flow.  相似文献   

19.
The free thermal vibration of functionally graded material (FGM) cylindrical shells containing porosities is investigated. Both even distribution and uneven distribution are taken into account. In addition, three thermal load types, i.e., uniform temperature rise (UTR), nonlinear temperature rise (NLTR), and linear temperature rise (LTR), are researched to explore their effects on the vibration characteristics of porous FGM cylindrical shells. A modified power-law formulation is used to describe the material properties of FGM shells in the thickness direction. Love’s shell theory is used to formulate the strain-displacement equations, and the Rayleigh-Ritz method is utilized to calculate the natural frequencies of the system. The results show that the natural frequencies are affected by the porosity volume fraction, constituent volume fraction, and thermal load. Moreover, the natural frequencies obtained from the LTR have insignificant differences compared with those from the NLTR. Due to the calculation complexity of the NLTR, we propose that it is reasonable to replace it by its linear counterpart for the analysis of thin porous FGM cylindrical shells. The present results are verified in comparison with the published ones in the literature.  相似文献   

20.
In this paper, the governing equations for non-linear free vibration of truncated, thin, laminated, orthotropic conical shells using the theory of large deformations with the Karman-Donnell-type of kinematic nonlinearity are derived. Applying superposition principle and Galerkin’s method, these equations are reduced to a time dependent non-linear differential equation. The frequency-amplitude relationship for the laminated orthotropic thin truncated conical shell is obtained using the method of weighted residuals. In the particular case, we can obtain the similar relationships for the single-layer and laminated orthotropic cylindrical shells, also. The influence played by geometrical parameters of the conical shell and physical parameters of the laminate (i.e. material properties, staking sequences and number of layers) on the non-linear vibration behavior of the conical shell is examined. It is noticed that the non-linear vibration of shells is highly dependent on laminate characteristics and, from these observations, it is concluded that specific configurations of laminates should be designed for each kind of application. Present results are compared with available data for special cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号