首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
The paper presents the effective stiffness theory for isotropie two-phase elastic composites. The theory predicts dispersion of longitudinal and transverse plane time-harmonic travelling waves. The limiting phase velocities at vanishing wave numbers serve in the determination of the elastic moduli of the equivalent homogeneous isotropic medium. These elastic moduli are compared with the effective moduli defined statically.  相似文献   

2.
In this paper, the governing relations and equations are derived for nonlocal elastic solid with voids. The propagation of time harmonic plane waves is investigated in an infinite nonlocal elastic solid material with voids. It has been found that three basic waves consisting of two sets of coupled longitudinal waves and one independent transverse wave may travel with distinct speeds. The sets of coupled waves are found to be dispersive, attenuating and influenced by the presence of voids and nonlocality parameters in the medium. The transverse wave is dispersive but non-attenuating, influenced by the nonlocality and independent of void parameters. Furthermore, the transverse wave is found to face critical frequency, while the coupled waves may face critical frequencies conditionally. Beyond each critical frequency, the respective wave is no more a propagating wave. Reflection phenomenon of an incident coupled longitudinal waves from stress-free boundary surface of a nonlocal elastic solid half-space with voids has also been studied. Using appropriate boundary conditions, the formulae for various reflection coefficients and their respective energy ratios are presented. For a particular model, the effects of non-locality and dissipation parameter (\(\tau \)) have been depicted on phase speeds and attenuation coefficients of propagating waves. The effect of nonlocality on reflection coefficients has also been observed and shown graphically.  相似文献   

3.
Based on a continuum model for oriented elastic solids the set of nonlinear dispersive equations derived in Part I of this work allows one to investigate the nonlinear wave propagation of the soliton type. The equations govern the coupled rotation-displacement motions in connection with the linear elastic behavior and large-amplitude rotations of the director field. In the one-dimensional version of the equations and for two simple configurations an exhaustive study of solitons is presented. We show that the transverse and/or longitudinal elastic displacements are coupled to the rotational motion so that solitons, jointly in the rotation of the director and the elastic deformations, are exhibited. These solitons are solutions of a system of linear wave equations for the elastic displacements which are nonlinearly coupled to a sine-Gordon equation for the rotational motion. For each configuration, the solutions are numerically illustrated and the energy of the solitions is calculated. Finally, some applications of the continuum model and the related nonlinear dynamics to several physical situations are given and additional more complex problems are also evoked by way of conclusion.  相似文献   

4.
给出了磁场、热场和弹性场多场耦合作用下微极广义热弹性固体的一般控制方程.该方 程既包含了磁场、热场和弹性场的耦合作用,又在其广义热传导方程中涵盖了耦合热弹理论 (C-D)及其5类推广(L-S理论,G-L理论,G-N(II,III)理论和C-T理论).运用该微极广义磁热 弹性控制方程,研究了在定常磁场作用下, 具有均匀初始温度的两理想接触微极弹性介质平面分界面上磁热弹性波的反射和折射现象.给出了分别在缺少磁场、热场作用或不同广义热传 导理论下反射或折射热波、纵向位移波、耦合横向和微旋转波与入射纵向位移波的振幅比随 入射角变化的关系曲线.对缺少磁、热和微极性以及热松弛时间时对应的反射、折射系数进 行了对比.结果表明磁、热和微极性以及热松弛时间对振幅比均有不同程度的影 响,与磁、热和微极性一样,热松弛时间对不同类型波的影响能力差别明显,但对同 一类型的反射波和折射波的影响相似.  相似文献   

5.
The propagation of elastic waves is studied in a porous solid saturated with two immiscible viscous fluids.The propagation of three longitudinal waves is represented through three scalar potential functions.The lone transverse wave is presented by a vector potential function.The displacements of particles in different phases of the aggregate are defined in terms of these potential functions.It is shown that there exist three longitudinal waves and one transverse wave.The phenomena of reflection and refraction due to longitudinal and transverse waves at a plane interface between an elastic solid half-space and a porous solid half-space saturated with two immiscible viscous fluids are investigated.For the presence of viscosity in pore-fluids,the waves refracted to the porous medium attenuate in the direction normal to the interface.The ratios of the amplitudes of the reflected and refracted waves to that of the incident wave are calculated as a nonsingular system of linear algebraic equations.These amplitude ratios are used to further calculate the shares of different scattered waves in the energy of the incident wave.The modulus of the amplitude and the energy ratios with the angle of incidence are computed for a particular numerical model.The conservation of the energy across the interface is verified.The effects of variations in non-wet saturation of pores and frequencies on the energy partition are depicted graphically and discussed.  相似文献   

6.
流体饱和标准线性粘弹性多孔介质中的平面波   总被引:4,自引:1,他引:3  
研究了流体饱和不可压标准线性粘弹性多孔介质中平面波的传播和反射问题.在固相骨架小变形的假定下,得到了粘弹性多孔介质中波动方程的一般解,讨论了弥散关系和波的衰减特性.结果表明:在流体饱和不可压粘弹性多孔介质中,仅存在一个耦合纵波和一个耦合横波,纵波和横波的波速、衰减率等取决于孔隙流体与固相骨架间的相互作用以及固相骨架本身的粘性.同时,研究了半空间自由边界上入射波(纵波、横波)的反射问题。得到了非均匀反射波的波速、反射系数、衰减率等的表达式及其相关的数值结果.  相似文献   

7.
The present paper studies the propagation of plane time harmonic waves in an infinite space filled by a thermoelastic material with microtemperatures. It is found that there are seven basic waves traveling with distinct speeds: (a) two transverse elastic waves uncoupled, undamped in time and traveling independently with the speed that is unaffected by the thermal effects; (b) two transverse thermal standing waves decaying exponentially to zero when time tends to infinity and they are unaffected by the elastic deformations; (c) three dilatational waves that are coupled due to the presence of thermal properties of the material. The set of dilatational waves consists of a quasi-elastic longitudinal wave and two quasi-thermal standing waves. The two transverse elastic waves are not subjected to the dispersion, while the other two transverse thermal standing waves and the dilatational waves present the dispersive character. Explicit expressions for all these seven waves are presented. The Rayleigh surface wave propagation problem is addressed and the secular equation is obtained in an explicit form. Numerical computations are performed for a specific model, and the results obtained are depicted graphically.  相似文献   

8.
The problem of propagation of a Lamb elastic wave in a thin plate is considered using the Cosserat continuum model. The deformed state is characterized by independent displacement and rotation vectors. Solutions of the equations of motion are sought in the form of wave packets specified by a Fourier spectrum of an arbitrary shape for three components of the displacement vector and three components of the rotation vector which depend on time, depth, and the longitudinal coordinate. The initial system of equations is split into two systems, one of which describes a Lamb wave and the second corresponds to a transverse wave whose amplitude depends on depth. Analytical solutions in displacements are obtained for the waves of both types. Unlike the solution for Lamb waves, the solution obtained for the transverse wave has no analogs in classical elasticity theory. The solution for the transverse wave is compared with the solution for the Lamb wave. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 143–150, January–February, 2007. An erratum to this article is available at .  相似文献   

9.
The theory of Tuncay and Corapcioglu (Transp Porous Media 23:237–258, 1996a) has been employed to investigate the possibility of plane wave propagation in a fractured porous medium containing two immiscible fluids. Solid phase of the porous medium is assumed to be linearly elastic, isotropic and the fractures are assumed to be distributed isotropically throughout the medium. It has been shown that there can exist four compressional waves and one rotational wave. The phase speeds of these waves are found to be affected by the presence of fractures, in general. Of the four compressional waves, one arises due to the presence of fractures in the medium and the remaining three are those encountered by Tuncay and Corapcioglu (J Appl Mech 64:313–319, 1997). Reflection and transmission phenomena at a plane interface between a uniform elastic half-space and a fractured porous half-space containing two immiscible fluids, are analyzed due to incidence of plane longitudinal/transverse wave from uniform elastic half-space. Variation of modulus of amplitude and energy ratios with the angle of incidence are computed numerically by taking the elastic half-space as granite and the fractured porous half-space as sandstone material containing non-viscous wetting and non-wetting fluid phases. The results obtained in case of porous half-space with fractures, are compared graphically with those in case of porous half-space without fractures. It is found that the presence of fractures in the porous half-space do affect the reflection/transmission of waves, which is responsible for raising the reflection and lowering the transmission coefficients.  相似文献   

10.
11.
This work is concerned with the wave propagation and their reflection and transmission from a plane interface between two different electro-microelastic solid half-spaces in perfect contact. It is found that there exist five basic waves in an infinite electro-microelastic solid, namely an independent longitudinal micro-rotational wave, two sets of coupled longitudinal waves influenced by the electric effect, and two sets of coupled transverse waves. The existence of the two sets of coupled longitudinal waves is new. In the absence of microstretch and electric effects, these two coupled longitudinal waves reduce to a longitudinal displacement wave of micropolar elasticity. Amplitude and energy ratios of various reflected and transmitted waves are presented when (i) a set of coupled longitudinal wave is made incident and (ii) a set of coupled transverse wave is made incident. Numerical computations have been performed for a particular model and the variations of amplitude and energy ratios are obtained against the angle of incidence. The results obtained are depicted graphically. It has been verified that the sum of energy ratios is equal to unity at the interface and the amplitude ratios of reflected and transmitted waves depend upon the angle of incidence, frequency and elastic properties of the media. Results of some earlier workers have also been reduced from the present formulation.  相似文献   

12.
13.
It is shown that the collision of approaching weak travelling waves in a nonlinearly elastic leads to shock formation in finite time. Whereas the travelling waves are transverse, the shock is formed in the longitudinal waves generated by the collision.  相似文献   

14.
The Frenkel–Biot P-wave of the first type is a seismic longitudinal wave observed in rocks fully saturated with oil, water or high-pressure gas. The P-wave of the second type is observed in unsaturated soils and other porous media saturated with gas of low pressure. Their models include properties of the skeleton, that is, its elastic modules and its own viscosity. If the non-linear terms are accounted for, the asymptotic analysis, usual for weak non-linear waves, might be applied to get the wave spectrum evolution. The wetness of grains contacts in soils and such components of oil as tars or bitumen, which attached to the skeleton, can be described by generalized viscous–elastic stress–strain connections. The latter are nominated in such a way that creates the narrow frequency interval of wave of negative dissipation where the non-linear terms begin to play the main role besides the neutral stability for waves of zero wave number. The corresponding case, relevant to single continuum model, was analyzed in the literature. Here it is shown that the interpenetrating continua with interaction of the Darcy type provide the dissipation sink in the wave evolution equation. This generalization, (Tribelsky, M.I.: Phys. Rev. Lett. (2007, submitted)), can stabilize the asymptotic solution of the evolution equation, where the dispersion terms are omitted. The asymptotic solution of the equation is invariant to initial conditions and it means a transformation of initial wave spectra to unique one while wave is spreading in the viscous–elastic medium under consideration. This explains the phenomenon, observed in wave tests at marine beach, when any dynamics action (impact, explosion, and ultrasound action) created at some distance a wave of a single frequency (~25 Hz).  相似文献   

15.
The problem of reflection and transmission of plane waves incident on the contact surface of an elastic solid and an electro-microstretch generalized thermoelastic solid is discussed. It is found that there exist five reflected waves, i.e., longitudinal displacement (LD) wave, thermal (T) wave, longitudinal microstretch (LM) wave and two coupled transverse displacement and microrotational (CD(I) and CD(II)) waves in the electro-microstretch generalized thermoelastic solid, and two transmitted waves, i.e., longitudinal (P) and transverse (SV) waves in the elastic solid. The amplitude ratios of different reflected and transmitted waves are obtained for an imperfect boundary and deduced for normal force stiffness, transverse force stiffness, and perfect bonding. The variations of amplitude ratios with incidence angles have been depicted graphically for the LD wave and the CD(I) wave. It is noticed that the amplitude ratios of reflected and transmitted waves are affected by the stiffness, electric field, stretch, and thermal properties of the media. Some particular interest cases have been deduced from the present investigations.  相似文献   

16.
A problem of propagation of longitudinal and transverse waves in a multimodulus elastic isotropic medium is considered. In the model used, the medium is described by a potential depending on three invariants of strains, which allows the influence of preliminary deformation of the medium on the longitudinal and transverse velocities to be taken into account. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 176–182, July–August, 2009.  相似文献   

17.
18.
This study is concerned with the reflection and transmission of plane waves at an imperfectly bonded interface between two orthotropic micropolar elastic half-spaces with different elastic and micropolar properties. There exist three types of coupled waves in xy-plane. The reflection and transmission coefficients of quasi-longitudinal (QLD) wave, quasi-coupled transverse microrotational (QCTM) wave and quasi-coupled transverse displacement (QCTD) wave have been derived for different incidence waves and deduced for normal force stiffness, transverse force stiffness, transverse couple stiffness and perfect bonding. The numerical values of modules of the reflection and transmission coefficients are presented graphically with the angle of incidence for orthotropic micropolar medium (MOS) and isotropic micrpolar medium (MIS). Some particular cases of interest have been deduced from the present investigation.  相似文献   

19.
An investigation is made into the propagation and evolution of wave fronts in a porous medium which is intended to contain two phases: the porous solid, referred to as the skeleton, and the fluid within the interconnected pores formed by the skeleton. In particular, the microscopic density of each real material is assumed to be unchangeable, while the macroscopic density of each phase may change, associated with the volume fractions. A two-phase porous medium model is concisely introduced based on the work by de Boer. Propagation conditions and amplitude evolution of the discontinuity waves are presented by use of the idea of surfaces of discontinuity, where the wave front is treated as a surface of discontinuity. It is demonstrated that the saturation condition entails certain restrictions between the amplitudes of the longitudinal waves in the solid and fluid phases. Two propagation velocities are attained upon examining the existence of the discontinuity waves. It is found that a completely coupled longitudinal wave and a pure transverse wave are realizable in the two-phase porous medium. The discontinuity strength of the pore-pressure may be determined by the amplitude of the coupled longitudinal wave. In the case of homogeneous weak discontinuities, explicit evolution equations of the amplitudes for two types of discontinuity waves are derived.  相似文献   

20.
Based on the poroelasticity theory, this article investigates the reflection and transmission characteristics of an incident plane transverse wave at a plane interface between an isotropic elastic half-space and an unsaturated poroelastic solid half-space. For this purpose, the effect of the saturation degree and frequency on the properties of the four bulk waves in unsaturated porous medium, i.e., three longitudinal waves and one transverse wave, are discussed at first. Two general cases of mode conversion are considered: (i) The initial transverse wave is incident from an unsaturated poroelastic half-space to the interface, and (ii) the initial transverse wave is incident from an elastic solid half-space to the interface. The expressions for the partition of energy at the interface during transmission and reflection process of waves are presented in explicit forms. At last, numerical computations are performed for these two cases and the results obtained are depicted, respectively. The variation of the amplitude ratios and energy ratios with the saturation degree and incident angle is illustrated in detail. It is also verified that, at the interface, the sum of energy ratios is approximately equal to unity as expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号