首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wave propagation in a porous elastic medium saturated by two immiscible fluids is investigated. It is shown that there exist three dilatational waves and one transverse wave propagating with different velocities. It is found that the velocities of all the three longitudinal waves are influenced by the capillary pressure, while the velocity of transverse wave does not at all. The problem of reflection and refraction phenomena due to longitudinal and transverse wave incident obliquely at a plane interface between uniform elastic solid half-space and porous elastic half-space saturated by two immiscible fluids has been analyzed. The amplitude ratios of various reflected and refracted waves are found to be continuous functions of the angle of incidence. Expression of energy ratios of various reflected and refracted waves are derived in closed form. The amplitude ratios and energy ratios have been computed numerically for a particular model and the results obtained are depicted graphically. It is verified that during transmission there is no dissipation of energy at the interface. Some particular cases have also been reduced from the present formulation.  相似文献   

2.
Based on the poroelasticity theory, this article investigates the reflection and transmission characteristics of an incident plane transverse wave at a plane interface between an isotropic elastic half-space and an unsaturated poroelastic solid half-space. For this purpose, the effect of the saturation degree and frequency on the properties of the four bulk waves in unsaturated porous medium, i.e., three longitudinal waves and one transverse wave, are discussed at first. Two general cases of mode conversion are considered: (i) The initial transverse wave is incident from an unsaturated poroelastic half-space to the interface, and (ii) the initial transverse wave is incident from an elastic solid half-space to the interface. The expressions for the partition of energy at the interface during transmission and reflection process of waves are presented in explicit forms. At last, numerical computations are performed for these two cases and the results obtained are depicted, respectively. The variation of the amplitude ratios and energy ratios with the saturation degree and incident angle is illustrated in detail. It is also verified that, at the interface, the sum of energy ratios is approximately equal to unity as expected.  相似文献   

3.
The problem of reflection and transmission due to longitudinal and transverse waves incident obliquely at a plane interface between uniform elastic solid half-space and fractional order thermoelastic solid half-space has been studied. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence and frequency of incident wave and are influenced by the fractional order thermoelastic properties of media. The expressions of amplitude ratios and energy ratios have been computed numerically for a particular model. The variation of amplitude and energy ratios with angle of incidence is shown graphically. The conservation of energy at the interface is verified.  相似文献   

4.
The theory of Tuncay and Corapcioglu (Transp Porous Media 23:237–258, 1996a) has been employed to investigate the possibility of plane wave propagation in a fractured porous medium containing two immiscible fluids. Solid phase of the porous medium is assumed to be linearly elastic, isotropic and the fractures are assumed to be distributed isotropically throughout the medium. It has been shown that there can exist four compressional waves and one rotational wave. The phase speeds of these waves are found to be affected by the presence of fractures, in general. Of the four compressional waves, one arises due to the presence of fractures in the medium and the remaining three are those encountered by Tuncay and Corapcioglu (J Appl Mech 64:313–319, 1997). Reflection and transmission phenomena at a plane interface between a uniform elastic half-space and a fractured porous half-space containing two immiscible fluids, are analyzed due to incidence of plane longitudinal/transverse wave from uniform elastic half-space. Variation of modulus of amplitude and energy ratios with the angle of incidence are computed numerically by taking the elastic half-space as granite and the fractured porous half-space as sandstone material containing non-viscous wetting and non-wetting fluid phases. The results obtained in case of porous half-space with fractures, are compared graphically with those in case of porous half-space without fractures. It is found that the presence of fractures in the porous half-space do affect the reflection/transmission of waves, which is responsible for raising the reflection and lowering the transmission coefficients.  相似文献   

5.
This work is concerned with the wave propagation and their reflection and transmission from a plane interface between two different electro-microelastic solid half-spaces in perfect contact. It is found that there exist five basic waves in an infinite electro-microelastic solid, namely an independent longitudinal micro-rotational wave, two sets of coupled longitudinal waves influenced by the electric effect, and two sets of coupled transverse waves. The existence of the two sets of coupled longitudinal waves is new. In the absence of microstretch and electric effects, these two coupled longitudinal waves reduce to a longitudinal displacement wave of micropolar elasticity. Amplitude and energy ratios of various reflected and transmitted waves are presented when (i) a set of coupled longitudinal wave is made incident and (ii) a set of coupled transverse wave is made incident. Numerical computations have been performed for a particular model and the variations of amplitude and energy ratios are obtained against the angle of incidence. The results obtained are depicted graphically. It has been verified that the sum of energy ratios is equal to unity at the interface and the amplitude ratios of reflected and transmitted waves depend upon the angle of incidence, frequency and elastic properties of the media. Results of some earlier workers have also been reduced from the present formulation.  相似文献   

6.
The present investigation is concerned with the wave propagation at the boundary surface of elastic half-space and initially stressed viscothermoelastic diffusion with voids half-space. The longitudinal and transverse waves are incident obliquely at the plane interface between uniform elastic half-space and initially stressed viscothermoelastic diffusion with voids half-space. It is found that the amplitude ratios of various reflected and transmitted waves are functions of angle of incidence, frequency of incident wave and are influenced by the initial stress, diffusion, voids, elastic and viscoelastic properties of media. The expressions of amplitude ratios and energy ratios are obtained in closed form and computed numerically for a specific model. The variations of energy ratios with angle of incidence are shown graphically. The conservation of energy at the interface is verified.  相似文献   

7.
The possibility of plane wave propagation in a micropolar fluid of infinite extent has been explored. The reflection and transmission of longitudinal elastic wave at a plane interface between a homogeneous micropolar fluid half-space and a micropolar solid half-space has also been investigated. It is found that there can exist four plane waves propagating with distinct phase speeds in an infinite micropolar fluid. All the four waves are found to be dispersive and attenuated. The reflection and transmission coefficients are found to be the functions of the angle of incidence, the elastic properties of the half-spaces and the frequency of the incident wave. The expressions of energy ratios have also been obtained in explicit form. Frequency equation for the Stoneley wave at micropolar solid/fluid interface has also been derived in the form of sixth-order determinantal expression, which is found in full agreement with the corresponding result of inviscid liquid/elastic solid interface. Numerical computations have been performed for a specific model. The dispersion curves and attenuation of the existed waves in micropolar fluid have been computed and depicted graphically. The variations of various amplitudes and energy ratios are also shown against the angle of incidence. Results of some earlier workers have been deduced from the present formulation.  相似文献   

8.
给出了磁场、热场和弹性场多场耦合作用下微极广义热弹性固体的一般控制方程.该方 程既包含了磁场、热场和弹性场的耦合作用,又在其广义热传导方程中涵盖了耦合热弹理论 (C-D)及其5类推广(L-S理论,G-L理论,G-N(II,III)理论和C-T理论).运用该微极广义磁热 弹性控制方程,研究了在定常磁场作用下, 具有均匀初始温度的两理想接触微极弹性介质平面分界面上磁热弹性波的反射和折射现象.给出了分别在缺少磁场、热场作用或不同广义热传 导理论下反射或折射热波、纵向位移波、耦合横向和微旋转波与入射纵向位移波的振幅比随 入射角变化的关系曲线.对缺少磁、热和微极性以及热松弛时间时对应的反射、折射系数进 行了对比.结果表明磁、热和微极性以及热松弛时间对振幅比均有不同程度的影 响,与磁、热和微极性一样,热松弛时间对不同类型波的影响能力差别明显,但对同 一类型的反射波和折射波的影响相似.  相似文献   

9.
流体饱和标准线性粘弹性多孔介质中的平面波   总被引:4,自引:1,他引:3  
研究了流体饱和不可压标准线性粘弹性多孔介质中平面波的传播和反射问题.在固相骨架小变形的假定下,得到了粘弹性多孔介质中波动方程的一般解,讨论了弥散关系和波的衰减特性.结果表明:在流体饱和不可压粘弹性多孔介质中,仅存在一个耦合纵波和一个耦合横波,纵波和横波的波速、衰减率等取决于孔隙流体与固相骨架间的相互作用以及固相骨架本身的粘性.同时,研究了半空间自由边界上入射波(纵波、横波)的反射问题。得到了非均匀反射波的波速、反射系数、衰减率等的表达式及其相关的数值结果.  相似文献   

10.
The mixture theory is employed to the analysis of surface-wave propagation in a porous medium saturated by two compressible and viscous fluids (liquid and gas). A linear isothermal dynamic model is implemented which takes into account the interaction between the pore fluids and the solid phase of the porous material through viscous dissipation. In such unsaturated cases, the dispersion equations of Rayleigh and Love waves are derived respectively. Two situations for the Love waves are discussed in detail: (a) an elastic layer lying over an unsaturated porous half-space and (b) an unsaturated porous layer lying over an elastic half-space. The wave analysis indicates that, to the three compressional waves discovered in the unsaturated porous medium, there also correspond three Rayleigh wave modes (R1, R2, and R3 waves) propagating along its free surface. The numerical results demonstrate a significant dependence of wave velocities and attenuation coefficients of the Rayleigh and Love waves on the saturation degree, excitation frequency and intrinsic permeability. The cut-off frequency of the high order mode of Love waves is also found to be dependent on the saturation degree.  相似文献   

11.
The relection elastic waves at the elastically supported boundary of a couple stress elastic half-space are studied in this paper. Different from the classical elastic solid, there are three kinds of elastic waves in the couple stress elastic solid, and two of them are dispersive. The boundary conditions of a couple stress elastic half-space include the couple stress vector and the rotation vector which disappear in the classical elastic solids. These boundary conditions are used to obtain a linear algebraic equation set, from which the amplitude ratios of relection waves to the incident wave can be determined. Then, the relection coeficients in terms of energy lux ratios are calculated numerically, and the normal energy lux conservation is used to validate the numerical results. Based on these numerical results,the inluences of the boundary parameters, which relect the mechanical behavior of elastic support, on the relection energy partition are discussed. Both the incident longitudinal wave(the P wave) and incident transverse wave(the SV wave) are considered.  相似文献   

12.
The reflection and refraction of a longitudinal wave at an interface between a perfectly conducting nonviscous liquid half-space and a perfectly conducting microstretch elastic solid half-space are studied. The appropriate solutions to the governing equations are obtained in both the half-spaces satisfying the required boundary conditions at the interface to obtain a system of five non-homogeneous equations in the amplitude ratios of various reflected and transmitted waves. The system is solved by a Fortran program of the Gauss elimination method for a particular example of an interface between water and aluminum-epoxy composite. Numerical values of the amplitude ratios are computed for a certain range of the incidence angle both in the presence and absence of an impressed transverse magnetic field. The effects of the presence of the transverse magnetic field on the amplitude ratios of various reflected and transmitted waves are shown graphically.  相似文献   

13.
The present study is concerned with the wave propagation in an electro-microelastic solid. The reflection phenomenon of plane elastic waves from a stress free plane boundary of an electro-microelastic solid half-space is studied. The condition and the range of frequency for the existence of elastic waves in an infinite electro-microelastic body are investigated. The constitutive relations and the field equations for an electro-microelastic solid are stemmed from the Eringen’s theory of microstretch elasticity with electromagnetic interactions. Amplitude ratios and energy ratios of various reflected waves are presented when an elastic wave is made incident obliquely at the stress free plane boundary of an electro-microelastic solid half-space. It has been verified that there is no dissipation of energy at the boundary surface during reflection. Numerical computations are performed for a specific model to calculate the phase speeds, amplitude ratios and energy ratios, and the results obtained are depicted graphically. The effect of elastic parameter corresponding to micro-stretch is noticed on reflection coefficients, in particular. Results of Parfitt and Eringen [Parfitt, V.R., Eringen, A.C., 1969. Reflection of plane waves from a flat boundary of a micropolar elastic half-space. J. Acoust. Soc. Am. 45, 1258–1272] have also been reduced as a special case from the present formulation.  相似文献   

14.
The present paper concentrates on the study of reflection and refraction characteristics of plane waves at an imperfectly bonded interface of two orthotropic generalized thermoelastic rotating half-spaces with different elastic and thermal properties. In this type of problem of orthotropic thermoelastic rotating medium, there are three types of plane waves quasi longitudinal (QL-) wave, quasi thermal (T-mode) wave and quasi transverse (QT-) wave, whose velocities depend on the angle of incidence, imperfection and rotation. The amplitude ratios of reflected waves to that of incident one in each case have been derived. Some special cases of boundaries, i.e. normal stiffness, transverse stiffness, thermal contact conductance, slip boundary and welded contact boundary have been deduced from an imperfect one. Effect of rotation on the amplitude ratios of different reflected and refracted waves with respect to incident QL-wave at different boundaries have been studied graphically. It is observed that thermal properties, imperfect boundary and rotation have significant effect on the propagation of waves.  相似文献   

15.
In this paper, the governing relations and equations are derived for nonlocal elastic solid with voids. The propagation of time harmonic plane waves is investigated in an infinite nonlocal elastic solid material with voids. It has been found that three basic waves consisting of two sets of coupled longitudinal waves and one independent transverse wave may travel with distinct speeds. The sets of coupled waves are found to be dispersive, attenuating and influenced by the presence of voids and nonlocality parameters in the medium. The transverse wave is dispersive but non-attenuating, influenced by the nonlocality and independent of void parameters. Furthermore, the transverse wave is found to face critical frequency, while the coupled waves may face critical frequencies conditionally. Beyond each critical frequency, the respective wave is no more a propagating wave. Reflection phenomenon of an incident coupled longitudinal waves from stress-free boundary surface of a nonlocal elastic solid half-space with voids has also been studied. Using appropriate boundary conditions, the formulae for various reflection coefficients and their respective energy ratios are presented. For a particular model, the effects of non-locality and dissipation parameter (\(\tau \)) have been depicted on phase speeds and attenuation coefficients of propagating waves. The effect of nonlocality on reflection coefficients has also been observed and shown graphically.  相似文献   

16.
The propagation, reflection, and transmission of SH waves in slightly compressible, finitely deformed elastic media are considered in this paper. The dispersion relation for SH-wave propagation in slightly compressible, finitely deformed layer overlying a slightly compressible, finitely deformed half-space is derived. The present paper also deals with the reflection and refraction (transmission) phenomena due to the SH wave incident at the plane interface between two distinct slightly compressible, finitely deformed elastic media. The closed form expressions for the amplitude ratios of reflection and refraction coefficients of the reflected and refracted SH waves are obtained from suitable boundary conditions. For the numerical discussions, we consider the Neo-Hookean form of a strain energy function. The phase speed curves, the variations of reflection, and transmission coefficients with the angle of incidence, and the plots of the slowness sections are presented by means of graphs.  相似文献   

17.
Time harmonic waves in a swelling porous elastic medium of infinite extent and consisting of solid, liquid and gas phases have been studied. Employing Eringen’s theory of swelling porous media, it has been shown that there exist three dilatational and two shear waves propagating with distinct velocities. The velocities of these waves are found to be frequency dependent and complex valued, showing that the waves are attenuating in nature. Here, the appearance of an additional shear wave is new and arises due to swelling phenomena of the medium, which disappears in the absence of swelling. The reflection phenomenon of an incident dilatational wave from a stress-free plane boundary of a porous elastic half-space has been investigated for two types of boundary surfaces: (i) surface having open pores and (ii) surface having sealed pores. Using appropriate boundary conditions for these boundary surfaces, the equations giving the reflection coefficients corresponding to various reflected waves are presented. Numerical computations are performed for a specific model consisting of sandstone, water and carbon dioxide as solid, liquid and gas phases, respectively, of the porous medium. The variations of phase speeds and their corresponding attenuation coefficients are depicted against frequency parameter for all the existing waves. The variations of reflection coefficients and corresponding energy ratios against the angle of incidence are also computed and depicted graphically. It has been shown that in a limiting case, Eringen’s theory of swelling porous media reduces to Tuncay and Corapcioglu theory of porous media containing two immiscible fluids. The various numerical results under these two theories have been compared graphically.  相似文献   

18.
The reflection and transmission of elastic waves through a couple-stress elastic slab that is sandwiched between two couple-stress elastic half-spaces are studied in this paper. Because of the couple-stress effects, there are three types of elastic waves in the couple-stress elastic solid, two of which are dispersive. The interface conditions between two couple-stress solids involve the surface couple and rotation apart from the surface traction and displacement. The nontraditional interface conditions between the slab and two solid half-spaces are used to obtain the linear algebraic equation sets from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the energy fluxes carried by the various reflection and transmission waves are calculated numerically and the normal energy flux conservation is used to validate the numerical results. The special case, couple-stress elastic slab sandwiched by the classical elastic half-spaces, is also studied and compared with the situation that the classical elastic slab sandwiched by the classical elastic half-spaces. Incident longitudinal wave (P wave) and incident transverse wave (SV wave) are both considered. The influences of the couple-stress are mainly discussed based on the numerical results. It is found that the couple-stress mainly influences the transverse modes of elastic waves.  相似文献   

19.
This research addresses the investigation of an elastic wave field in a homogeneous and isotropic porous medium which is fully saturated by a Newtonian viscous fluid. A new methodology is developed for describing the wave field in the medium excited by multiple energy sources. To quantify the relative displacements between the fluid and solid of the medium, the governing equations of the elastic wave propagation are derived in the form of displacements specially. The velocities and attenuation of the waves are considered as functions of viscosity and frequency. Making use of the Hankel function and the moving-coordinate method, a model of the wave motion with multiple cylindrical wave sources is built. Making use of the model established in this research, the relative displacement between the fluid and the solid can be quantified, and the wave field in the porous media can then be determined with the given energy sources. Numerical simulations of cylindrical waves from multiple energy sources propagating in the porous medium saturated by viscous fluid are performed for demonstrating the practicability of the model developed.  相似文献   

20.
The features of propagation of longitudinal and transverse waves (LW and TW) in fractured porous medium (FPM) saturated with liquid are investigated by methods of multiphase mechanics. The mathematical model of FPM accounting for inequality of velocities and pressures of liquid in pores and fractures, liquid mass exchange and nonstationary interaction forces is developed. Processes of monochromatic wave propagation are studied. The dispersion relation is obtained and the effect of model parameters on wave propagation is analysed. It is established that one transverse and three longitudinal waves propagate in FPM saturated with liquid. The fastest LW is a deformational wave and the two others are filtrational. Filtrational waves attenuate much stronger than deformational and transverse waves. Distinction of velocities and pressures in liquid in various pore systems provides an explanation for the existence of the two filtrational waves in porous medium with two different characteristic sizes of pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号