首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
Experiments were conducted in a Bangkok clay soil to evaluate the performance of a rotary tiller equipped with reverse or conventional blades. The conventional rotary tiller was equipped with C-type blades whereas the reverse-rotary tiller had new types of blades. Tests were conducted on wet land as well as in dry land. Tests were conducted at tractor forward speeds of 1.0, 1.5 and 2.0 km/h. A power-take-off (PTO) power consumed was calculated from the PTO torque and speed. The results indicated that the PTO power consumption was less for the reverse-rotary tiller compared to the conventional tiller for all passes and forward speeds. For both rotary tillers, power consumption decreased as the number of passes increased, whereas power consumption increased when the forward speed was increased. At all forward speeds, the power consumption was the highest during the first pass and lowest during the third pass. The maximum difference of PTO power requirement was after the first pass at 1.0 km/h forward speed. The reverse-rotary tiller consumed about 34% less PTO power under this condition.  相似文献   

2.
A 6.71 kW power tiller was evaluated for draft and drawbar power on tar roads. The effect of mounting 40 kg of wheel ballast was also studied. Polynomial regression analysis was used to establish the relationship between draft and wheel slip, drawbar power and wheel slip, drawbar power and fuel consumption, and drawbar power and specific fuel consumption. The results of the study showed draft values of 2107, 2110 and 2110 N in second low, third low and first high gears at an engine speed of 150o rpm with a 15% wheel slip. The respective draft values at engine speed of 2000 rpm with a 15% wheel slip were 2172, 2189 and 2212 N. With the mounting of 40kg wheel ballast there was an increase in draft of 217, 207 and 291 N at 1500 rpm, and 328, 306 and 344 N at 2000 rpm of the engine with a 15% wheel slip in second low, third low and first high gears, respectively. The increase in drawbar power with 40 kg ballast was 10.88%, 7.83% and 20.13% at 1500 rpm and 18.89%, 16.56% and 14.88% at 2000 rpm of engine over the drawbar power available with zero ballast. The fuel consumption with the use of wheel ballast was slightly more than the fuel consumption without any ballast.  相似文献   

3.
Soil-blade dynamics in reverse-rotational rotary tillage   总被引:3,自引:0,他引:3  
Soil cutting and the clod crack formation process during reverse-rotational rotary tillage in a heavy clay soil were investigated. Of particular interest was the relationship between clod crack formation and tillage resistance during sequential rotations of the tillage blade. Investigation of the crack formation process is helpful to develop and to design more effective and high performance tillage methods. This paper describes two new discoveries. The first is that the tillage resistance showed a higher cross-correlation between sequential rotations within a certain distance of tilling, while there was little or no cross-correlation between different tillage plots that were separated more than 0.4 m. The forward distance of untilled soil that was disturbed by the tillage blade was estimated to be 36.4 mm. This is the distance of two tillage pitches. The second discovery involved the blade frequencies during tilling. Fluctuation in tillage resistance frequencies of a single blade was nearly equal to the predicted occurrence of crack intervals on the tilled clod's surface. This frequency was 120 Hz. When these frequencies were translated into the distance along the trochoid trajectory of the blade cutting edge, they were the same as the length of the clods tilled by the reverse-rotational rotary tiller. These minute vibrations in the tillage resistance were considered the important indexes for recognizing the tilled soil conditions and the tilled clod failure on the reverse-rotational rotary tiller. The analytical results of this paper will be utilized for the active occurrence of the cracks regarding with natural frequency of the blade and the operation condition of the reverse-rotational rotary tiller.  相似文献   

4.
In-cylinder PIV measurements have been performed in a four-valve single cylinder optical gasoline direct injection engine, motored at speeds of 750, 2,000 and 3,500 rpm. Mean vector flow fields have been produced during the latter half of the intake stroke in the symmetry plane between the valve pairs. The flow fields show the development of the in-cylinder flow structures at 1.6, 2.4 and 3.2° crank angle steps for a time period of approximately 5 ms at each of the three engine speeds, respectively. Tumble ratios have been calculated for the available field of view showing a change in the flow structure between 2,000 and 3,500 rpm. This is believed to be caused by an increase in the flow of air traveling underneath the recirculation vortex at the higher engine speed. This translates the vortex position upwards and further to the right when compared to the lower engine speeds.  相似文献   

5.
Experiments were conducted with a single powered disk in a laboratory soil bin containing Bangkok clay soil with an average moisture content of 18% (db) and 1100 kPa cone index. The disk was 510 cm in diameter and 560 mm in radius of concavity. During the tests the disk angle was varied from 20° to 35°, ground speed from 1 to 3 km/h and rotational speed from 60 to 140 rpm. The working depth was kept constant at 12 cm. The vertical, horizontal and lateral reactions of the soil were measured by force transducers. The forward and rotational speeds were recorded. It was observed that disk angle, rotational speed and ground speed had significant effects on soil reactive forces and power requirement. With a small disk angle, low ground speed, and high rotational speed, the soil longitudinal reactive force was a pushing force and became a resistive one at larger disk angles and ground speeds. The soil transverse reactive force increased with an increase of rotational and ground speed but decreased with the increase of disk angle, whereas the vertical relative force increased only with the increase of ground speed but decreased with the increase of rotational speed and disk angle. It was found that the powered disk required the least power at a disk angle of 30° and rotational speed between 80 and 100 rpm. Increase in ground speed from 1 to 3 km/h increased the total power requirement by 31.8%. Upon driving the disk forward, the draft reduced considerably compared to that of the free-rolling disk. By driving the disk in the reverse direction, the draft reduced slightly. At a disk angle of 30°, rotational speed of 100 rpm, and ground speed of 3 km/h, the total power requirement of the forward-driven disk was 65% higher than that of the free-rolling disk. The predicted engine power of the forward-driven disk, however, was only 21% higher than that of the free-rolling one owing to the more efficient power transmission through the PTO, as opposed to the drawbar. The effects of reverse driving and free rolling of the disk were also studied.  相似文献   

6.
A 8.95-kW walking tractor was evaluated for draft and drawbar power on tilled land. Empirical equations were developed to correlate the relationship between draft and wheel slip, drawbar power and wheel slip and drawbar power and fuel consumption. The values of draft, drawbar power and specific fuel consumption were calculated at 25% wheel slip. The results indicated that the values of draft on tilled land with pneumatic wheels at engine speed of 2000 rpm were 803 and 773 N in second low and third low gears, respectively. The respective draft values at engine speed of 1500 rpm were 748 and 735 N in second low and third low gears under slightly loose soil conditions. Mounting of a 40-kg wheel ballast increased the value of draft to 901 and 921 N at an engine speed of 2000 rpm and 872 and 888 N at an engine speed of 1500 rpm in second low and third low gears. Replacement of pneumatic wheels by steel wheels further increased the draft readings to 1034 and 999 N at an engine speed of 2000 rpm and 913 and 935 N at engine speed of 1500 rpm in second low and third low gears, respectively, indicating significant increase in drawbar power both at 2000 and 1500 rpm in second low and third low gears with the use of steel wheels. The specific fuel consumption decreased by about 28% and 27% at engine speed of 2000 rpm and about 17% and 21% at engine speed of 1500 rpm in second low and third low gear with the use of steel wheels over pneumatic wheels without wheel ballast. The specific fuel consumption decreased by about 4% and 14% at engine speed of 2000 rpm and 7% and 23% at engine speed of 1500 rpm in second low and third low gears, respectively, with the use of steel wheels over pneumatic wheels with 40 kg wheel ballast.  相似文献   

7.
Application of rotary tillage has been increased due to less tillage passes required, reduced draft, and greater efficiency through reduction in wheel slippage. Early failure of the bearing of tractor power take-off (PTO) shaft was observed in tractors of power range 30–35 horsepower during rotary tillage. An instrumentation setup involving an extended octagonal ring transducer (EORT) was developed and installed at the bottom of the bearing to measure the axial load and the vertical component of the radial load. The horizontal component of radial load was measured by strain gauges. Based on measured loads, the bearing life was assessed. Independent variables were: operating depth, number of blades, gear setting, engine speed, and tyre size. The average axial and radial loads varied from 786–3869 N, and 134–430 N, respectively. However, bearing experienced very high peak loads during each trial. The peak axial and radial loads was recorded between 1081–7534 N and 566–1794 N, respectively. The estimated bearing life based on peak loads was 171.98–28341.39 h. Based on the findings, it may be concluded that the average loads were not sufficient to cause quick failure of PTO bearing, rather sudden peak loads might be the root cause of early failure.  相似文献   

8.
Experiments were conducted in a typical Bangkok clay soil with a PTO driven disk tiller to collect the draft force and torque variation data. Tests were conducted at different forward speeds of 0.29, 0.59, 0.86, 1.08 and 1.37 m/s and at 28° and 33° disk gang angle settings. Average soil moisture content was 26% and average cone index of the test soil was 1870 kPa during all the tests. The draft force was measured by a three point linkage dynamometer. The PTO torque was measured by a slip ring type torque transducer. Tests were also conducted in the unpowered mode. Fast Fourier transform (FFT) and power spectral density (PSD) analysis techniques were used to analyse the draft force and torque variations in a time domain. The results indicated that the dominant frequencies of the draft force variations were within the range of 2.5–5.5 cycles/m of forward travel. The wave length was longer at a higher disk gang angle setting. The dominant frequency component of the torque variations varied from 3.3 to 4.3 cycles/revolution of the disk. In the unpowered mode the dominant frequencies of the draft signals had less magnitude than those of the powered mode for the same operating conditions at both disk gang angle settings of the powered disk.  相似文献   

9.

The low power and narrow speed range remain bottlenecks that constrain the application of small-scale wind energy harvesting. This paper proposes a simple, low-cost, and reliable method to address these critical issues. A galloping energy harvester with the cooperative mode of vibration and collision (GEH-VC) is presented. A pair of curved boundaries attached with functional materials are introduced, which not only improve the performance of the vibration energy harvesting system, but also convert more mechanical energy into electrical energy during collision. The beam deforms and the piezoelectric energy harvester (PEH) generates electricity during the flow-induced vibration. In addition, the beam contacts and separates from the boundaries, and the triboelectric nanogenerator (TENG) generates electricity during the collision. In order to reduce the influence of the boundaries on the aerodynamic performance and the feasibility of increasing the working area of the TENG, a vertical structure is designed. When the wind speed is high, the curved boundaries maintain a stable amplitude of the vibration system and increase the frequency of the vibration system, thereby avoiding damage to the piezoelectric sheet and improving the electromechanical conversion efficiency, and the TENG works with the PEH to generate electricity. Since the boundaries can protect the PEH at high wind speeds, its stiffness can be designed to be low to start working at low wind speeds. The electromechanical coupling dynamic model is established according to the GEH-VC operating principle and is verified experimentally. The results show that the GEH-VC has a wide range of operating wind speeds, and the average power can be increased by 180% compared with the traditional galloping PEH. The GEH-VC prototype is demonstrated to power a commercial temperature sensor. This study provides a novel perspective on the design of hybrid electromechanical conversion mechanisms, that is, to combine and collaborate based on their respective characteristics.

  相似文献   

10.
无线网络和低功耗微电子技术的进步推动着设备健康监测技术的网联化和智能化发展。轴承作为旋转设备的关键部件,对国防、轨道交通、风电等重大装备的健康状态起到了非常重要的作用,实现轴承状态监测的微型化和自供能是装备智能化的重要技术基础。本文针对于轴承无线传感器网络的供能问题,提出了一种用于轴承自供能监测的径向电磁式旋转能量俘获建模方法,并通过引入环形Halbach永磁阵列增强了线圈中的磁场强度,提高了能量俘获系统的输出性能。基于磁荷理论和空间坐标变换给出了环形Halbach永磁阵列的径向磁场计算方法,进而利用电磁感应原理建立了电磁式旋转能量俘获系统的输出电压模型,仿真分析了不同参数对系统输出电压的影响。有限元仿真和不同转速下的实验结果验证了所建立模型预测输出电压的准确性,同时功率测试实验表明设计的俘能系统在1000rpm转速下可实现81.2mW的输出功率。  相似文献   

11.
The transition to turbulent flow in the compression stage of a reciprocating engine is studied by obtaining the finite-difference numerical solutions to the governing Navier-Stokes equations without using explicit turbulence models. A computational method is developed under the assumption that the flow is in a low-subsonic regime with strong compression. The numerical method is a simple extension of the well known MAC method. Computations were performed for three different chamber geometries at the engine speed of 1400 rpm. The results of the computations clearly demonstrate the transient process in which large tumbling vortices break down into smaller ones near the end of the compression process. The transition process is also caught experimentally by using Mach-Zehnder interferometry.  相似文献   

12.
In this research, the auto-mutual information function and correlation dimension are used for determination of lag and embedding dimension needed for reconstruction of the attractor of in-cylinder pressure of an internal combustion engine. Subsequently, a locally constant model is used for a 20-step prediction. The time series are acquired at three different test conditions and consisting of succeeding pressures at compression Top Dead Center (TDC) position of one of four cylinders. We have concluded that at least at relatively low engine speeds (below 2000 rpm) this method produces acceptable results.  相似文献   

13.
Heavy demining machines are intended for humanitarian demining of larger mine-suspected areas. Two combinations of tools were considered herein: a working tool with two-flails, and a design with one flail and one tiller, and analyze the function of these variants. Some time ago, it was unimaginable to combine a flail and tiller, mostly because power demands were too high. Nonetheless, by suitably allocating the power to the working tools a realistic option was designed, which should be feasible even for smaller sized machines. In order to destroy AP and AT mines, the primary role is given to a flail of high diameter, and a backup function to the tiller whose diameter is two times lower. The depth and rpm of the tiller may be controlled independently of the flail, which ensures that digging depth is good enough. With two independent and different tools the density of hammer strikes is immediately adaptable to the conditions of mine density at different depths. The required force of the hammer impulse is determined in order to be able to overcome the resistance from digging the soil resistance. Furthermore, the independence of tool adaptation together with remote control improves the speed of mine clearing. A high reliability of mine destruction is thereby ensured. The results of machine testing show high graded performance regarding mine-clearance quality.  相似文献   

14.
A tillage depth control system for rotary implements mounted on an agricultural tractor was designed and constructed to improve accuracy of tillage depth. The control system was composed of five main units: (1) a detecting unit to measure the tilting angle (position) of the lift arm, the pitching angle of the tractor and heights of sensors from ground surface, (2) a controlling unit, (3) a hydraulic unit to operate a three-point hitch linkage by a lift arm cylinder, (4) a three-point hitch linkage and rotary implements, and (5) a setting unit to put the reference tillage depth and a dead zone into the control circuit. The tillage depth was controlled by an on/off operation of a solenoid valve, of which time was proportional to the controlling time. Experiments to evaluate the response characteristics of the control system were conducted under various engine speeds, i.e. various flow rates of hydraulic oil, various tillage depths and some input frequencies. The results of the response experiments of the control system are discussed in this paper.  相似文献   

15.
High-speed particle image velocimetry (HSPIV) was applied to an optical spark-ignition direct-injection engine in order to analyse various turbulent properties of the flow-field. The engine was motored at 1200 RPM with an intake pressure of 100 kPa, while HSPIV images were acquired at a sampling frequency of 5 kHz on both a vertical (tumble) plane and a horizontal (swirl) plane. The flow was decomposed in mean and fluctuating components via three different methods — ensemble averaging, spatial filtering, and temporal filtering. It was found that the velocity fluctuations calculated via the ensemble average method were more closely linked to low-frequency rather than high-frequency fluctuations, suggesting that they are more representative of cycle-to-cycle variation rather than true turbulence. Visual inspection of the high-frequency fluctuating flow-fields derived through the two filter based approaches revealed turbulent structures of similar size, shape and distribution. To equate the two filtering methods quantitatively, a spatial filter was designed with a mean flow speed scaled cut-off length, which was tuned in order to match the turbulent kinetic energy (TKE) of a 300 Hz temporal filter. A brief case study was then performed on a fuel-injected operating condition, run at the same 1200 RPM engine speed and 100 kPa intake pressure. A 1:1 split ratio dual-injection strategy was employed, with the first injection at 300°CA bTDC and the second injection at 110°CA bTDC. The relatively late second injection was found to significantly increase both the mean and turbulent velocities present in the flow-field in comparison to the motored condition, with TKE magnitudes being ~5 to 10 fold higher, depending on the choice of cut-off length.  相似文献   

16.
Blowby and gas flow through the cylinder–piston–ring crevices are phenomena that affect the engine performance and exhaust emissions. Also these phenomena influence the cylinder pressure and temperature and the charge amount during a cycle. The study and validation of a sub-model for these phenomena in the absence of engine combustion deducts all effects arisen from the combustion event. During the current study, blowby sub-model and gas flow through crevices under motoring conditions has been noticed using a volume–orifice theory and the experimental results measured from a research engine. Blowby geometric parameters, consisting of a few critical cross-section areas (orifice areas) and volumes (top land and inter-ring crevice volumes), were measured in ambient temperature and corrected for hot running conditions. The cylinder pressure during cycle was measured by a piezoelectric pressure transducer and the low pressure parts of the cycle were measured using a piezoresistive pressure transducer for referencing purposes. The obtained results show a very good agreement between experimentally measured pressure data and model output for three compression ratios of 7.6, 10.2, 12.4 and three engine speeds of 750, 1500 and 2000 rpm, so that the maximum deviation was almost 5%. The model predicted that the maximum mass loss increased with increase of compression ratio and decreased with increase of engine speed. Also the peak mass loss position happened within the range of 3–9°CA after top dead center. After occurrence of the maximum loss, a reverse flow from the top land crevice into the cylinder was predicted in the model.  相似文献   

17.
An image derotator is described that consists of a folded Abbé inverting prism built into the center of a hollow-shafted torque motor. The alignment and operation of the unit is discussed, and resolution of the derotated image in excess of 15 cyc/mm is shown. Its application to vibration analysis of rotating objects is demonstrated via double-exposure holograms recorded with a Q-switched, double-pulse, ruby laser. The necessity for using such a derotator is to maintain image alignment between pulses, rather than for stopping image motion during the pulses. The technique is shown to apply to contoured objects, to resonant and nonresonant vibrations, and to speeds up to 9200 rpm. In addition, application of the system for recording large-vibration amplitudes via double-exposure, speckle photography is demonstrated. Finally, concomitant observation of vibration with stroboscopic illumination synchronized to the rotation is described, where the vibration is manifested as a streaking of defocused speckles.  相似文献   

18.
A new turbulent flow system is proposed for the study of premixed turbulent combustion processes. This cruciform burner consists of two cylindrical vessels. The long vertical vessel can provide a stable downward propagating premixed-flame at one atmosphere. The horizontal vessel was equipped with a pair of motor-driven fans and perforated plates at each end. The fans can generate two intense counter-rotating large vortical streams with controllable fan frequency up to 7620 rpm. It was found that an approximately isotropic stationary turbulence with large turbulent intensities (greater than 450 cm/s) located in the core region between two perforated plates can be generated, as verified by extensive LDV measurements. In that mean velocities are nearly zero, turbulent intensities in all three directions are roughly equal, and the energy spectrum has a −5/3 slope, indicating that the turbulence has some properties of isotropic turbulence. Other parameters of interest, such as the autocorrelation, the integral length scale, and the experimental uncertainties are also reported for the first time. The present turbulence generator can be conveniently adopted for many experimental studies, such as gaseous premixed flames propagation and particle settling in nearly isotropic turbulence.  相似文献   

19.
In this paper, the PTO severeness of an agricultural tractor during rotary tillage and baler operation was analyzed. The S–N curves of the PTO driving gears were obtained through fatigue life test. To obtain the S–N curves of the PTO driving gears, the breakage time and rotational speed of the gears were measured through observation of the bending stress with changing torque. The torque acting on the PTO was measured and analyzed during rotary tillage and baler operation. Rotary tillage and baler operation were conducted at two ground speeds and two PTO rotational speeds at upland field sites with similar soil conditions, respectively. The load data were inverted to a load spectrum using rain-flow counting and SWT equations. Modified Miner’s rule was used to calculate the partial damage sum. The severeness was defined as the relative ratio of the damage sum. The results showed that the damage of the PTO increased when the ground speed or the PTO rotational speed increased. The effect of the PTO rotational speed on the severeness of the PTO was more significant than that of the ground speed. The severeness of the PTO of rotary tillage was greater than that of baler operation.  相似文献   

20.
This paper presents a dynamic analytical model for tank train vibrations. The train is considered as a system of 27 degrees of freedom consisting of lateral, roll, yaw, vertical, and pitch motions for the vehicle body and its two bogies and lateral, roll and vertical motions for the four wheel-sets. Liquid sloshing in the tank is modeled using an equivalent mechanical mass-spring model. Coupling between the vehicle system and the railway track is realized through the interaction forces between the train and the rail, where the vertical and lateral irregularity profiles of the track are regarded as stationary ergodic Gaussian random processes and simulated by polynomial functions. Random vibration theory is used to obtain the response power spectral densities. Finally, numerical results for a typical test case including natural frequencies of a coupled system, frequency response functions, and output power spectral densities are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号