首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intermediate filaments are one of the key components of the cytoskeleton in eukaryotic cells, and their mechanical properties are found to be equally important for physiological function and disease. While the mechanical properties of single full length filaments have been studied, how the mechanical properties of crosslinks affect the mechanical property of the intermediate filament network is not well understood. This paper applies a mesoscopic model of the intermediate network with varied crosslink strengths to investigate its failure mechanism under the extreme mechanical loading. It finds that relatively weaker crosslinks lead to a more flaw tolerant intermediate filament network that is also 23% stronger than the one with strong crosslinks. These findings suggest that the mechanical properties of interfacial components are critical for bioinspired designs which provide intriguing mechanical properties.  相似文献   

2.
随着海洋资源的不断开发和探索,机械密封技术已成为保证涉海装备正常运行和海洋开发可靠进行的必备关键要素之一. 本文作者从摩擦学和动力学等角度综述了涉海装备用机械密封技术的研究现状,重点从密封界面效应、多场耦合、动力学特性和密封面表面织构等几方面展开具体分析与讨论,对机械密封相关技术进一步的研究方向和发展趋势进行了总结和探索,指出了涉海装备用机械密封技术的发展方向及趋势,为今后涉海装备用机械密封的设计开发及应用提供了基础,对提高涉海装备用机械密封性能及装置运行安全性、稳定性和可靠性具有重要意义.   相似文献   

3.
L&#  Dongyuan  ZHOU L&#  wen  LONG Mian 《力学进展》1971,47(1):201715
干细胞生物力学作为生物力学的重要分支和前沿学科,近年来在力学-生物学、力学-化学耦合等方面取得了重大进展,已成为生物力学乃至生物医学工程最活跃的领域之一,并对发生物学、干细胞生物学、组织修复、再生医学等相关领域产生重要影响.干细胞具有独特的力学性质,可感知、传递、转导和响应生理力学微环境的改变,从而调控干细胞的生长、分化等功能,体现出典型的力学-生物学耦合特征.本文将对干细胞的力学性质与细胞力学模型、在体力学环境对干细胞生长和分化的影响、干细胞对外界力学刺激的响应等方面加以综述.  相似文献   

4.
Knets  I. 《Meccanica》2002,37(4-5):375-384
Five basic principles that determine the structure and mechanical behavior of almost any biological tissue have been formulated. They are the principle of hierarchy, principle of helicality, principle of feedback, principle of universality, and principle of an optimum. It is shown that there are also two types of factors – biological and mechanical – that must be taken into account in determining the mechanical properties of biological tissue. As an example of complexity of the mechanical behavior of a biological tissue the data on compact bone tissue are presented.  相似文献   

5.
The state-of-charge and deformation-rate dependent mechanical behavior of cylindrical lithium-ion battery cells was investigated. The research revealed that both state of charge and deformation rates affected the stiffness of the battery cells. Battery mechanical failure load was only weakly dependent on the state of charge. For the deformation-rate dependency on the mechanical integrity of battery cells, the battery mechanical failure load was either decreased significantly at high state of charge or decreased slightly at low state of charge as deformation rate increased. For the correlation between mechanical integrity and electrical failure, the displacement at the battery mechanical failure load coincided with a voltage drop. However, at high state of charge, premature and incomplete voltage drops were observed before the definite final voltage drop. No such premature voltage drop was observed in low state-of-charge specimens. The results of this research may be used as a reference for the design of impact and damage tolerant electric vehicle battery systems.  相似文献   

6.
A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first-and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theo-retical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is compli-cated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.  相似文献   

7.
固体氧化物燃料电池(SOFC)是一种清洁高效且具有广泛应用前景的绿色发电装置. SOFC采用了陶瓷材料电极和电解质并在高温下工作, 力学损伤是造成其性能和寿命衰减的主要因素之一. 由于实验测试的局限性, 基于宏观力学模型的数值模拟是优化SOFC电池和电堆结构、提高其性能和耐久性的重要手段. 本文综述并评价了SOFC宏观力学效应的研究进展, 介绍了SOFC在制造、正常运行和长期工作的不同阶段受到的残余应变、阳极氧化应变、化学膨胀、工作热应变以及蠕变等力学效应. 总结了各种力学效应以及目前关注较少的电化力耦合效应的理论和数值模拟研究现状, 最后展望了SOFC宏观力学性能研究的发展前景.   相似文献   

8.
研究了结构非线性振动及其控制系统的等效力学模型建立问题,对结构进行等效线性化处理;对状态变量的观测,仅测量结构的前几个位移。将随机激励和观测噪声等维化处理后,导出了结构非线性振动及其控制系统的等效力学模型。通过等效力学模型的应用研究,得出了多高层结构在风与地震作用下的多维与一维等效力学模型、等效振型力学模型及其线性力学模型,给出了等效力学模型在多高层结构自适应抗风抗震控制中的应用。  相似文献   

9.
There are known methods for determining the mechanical characteristics of films and membranes with plane initial geometry. But the films and membranes can have nonplanar initial shape (shell compositions of material-structure type) and complex structure. It is impossible to determine mechanical characteristics of such objects by the standard uniaxial tension method. There are few papers dealing with mechanical characteristics of shell material-structures with defects.  相似文献   

10.
剪切销是火工装置关键部件,其可靠性不仅表现为点火作用下可靠剪断,还表现为受力学环境激励不发生断裂。本文中以多项式混沌展开方法为基础,建立了力学环境约束下的剪切销分析模型,结合序贯优化与可靠性分析方法,提出了剪切销可靠性优化设计的思路。以某型火工作动装置为应用实例,依据实用的力学环境,进行了剪切销可靠性分析及优化设计,揭示了设计参数与力学环境之间的关系,并获得了影响可靠性的关键参数。最后,开展了优化后的火工作动装置实验测试,结果佐证了优化设计的有效性。  相似文献   

11.
Due to its crucial role in pathophysiology, erythrocyte deformability represents a subject of intense experimental and modeling research. Here a computational approach to electro-deformation for erythrocyte mechanical characterization is presented. Strong points of the proposed strategy are: (1) an accurate computation of the mechanical actions induced on the cell by the electric field, (2) a microstructurally-based continuum model of the erythrocyte mechanical behavior, (3) an original rotation-free shell finite element, especially suited to the application in hand. As proved by the numerical results, the developed tool is effective and sound, and can foster the role of electro-deformation in single-cell mechanical phenotyping.  相似文献   

12.
动脉壁静态力学性质的实验   总被引:3,自引:0,他引:3  
生命体材料的力学性质具有其特殊性和复杂性.因而,对其进行力学实验研究也具有从实验设计、实验方法到实验技术的特殊性和复杂性.本文详尽地研究了动脉壁三维静态力学实验的方法和技术:进行了四只白兔颈动脉的静态力学性质实验;得到了性态较好的实验结果  相似文献   

13.

Perpetual points in mathematics defined recently, and their significance in nonlinear dynamics and their application in mechanical systems is currently ongoing research. The perpetual points significance relevant to mechanics so far is that they form the perpetual manifolds of rigid body motions of unforced mechanical systems, which lead to the definition of perpetual mechanical systems. The perpetual mechanical systems admit as perpetual points rigid body motions which are forming the perpetual manifolds. The concept of perpetual manifolds extended to the definition of augmented perpetual manifolds that an externally excited multi-degree of freedom mechanical system is moving as a rigid body, and may exhibit particle-wave motion. This article is complementary to the work done so far applied to natural perpetual dissipative mechanical systems with motion defined by the exact augmented perpetual manifolds, whereas the internal forces, and individual energies are examined, to understand further the mechanics of these systems while their motion is in the exact augmented perpetual manifolds. A theorem is proved stating that under conditions when the motion of a perpetual natural dissipative mechanical system is in the exact augmented perpetual manifolds, all the internal forces are zero, which is rather significant in the mechanics of these systems since the operation on augmented perpetual manifolds leads to zero internal degradation. Moreover, the theorem is stating that the potential energy is constant, and there is no dissipation of energy, therefore the process is internally isentropic, and there is no energy loss within the perpetual mechanical system. Also in this theorem is proved that the external work done is equal to the changes of the kinetic energy, therefore the motion in the exact augmented perpetual manifolds is driven only by the changes of the kinetic energy. This is also a significant outcome to understand the mechanics of perpetual mechanical systems while it is in particle-wave motion which is guided by kinetic energy changes. In the final statement of the theorem is stated and proved that the perpetual dissipative mechanical system can behave as a perpetual machine of third kind which is rather significant in mechanical engineering. Noting that the perpetual mechanical system apart of the augmented perpetual manifolds solutions is having other solutions too, e.g., in higher normal modes and in these solutions the theorem is not valid. The developed theory is applied in the only two possible configurations that a mechanical system can have. The first configuration is a perpetual mechanical system without any connection through structural elements with the environment. In the second configuration, the perpetual mechanical system is a subsystem, connected with structural elements with the environment. In both examples, the motion in the exact augmented perpetual manifolds is examined with the view of mechanics defined by the theorem, resulting in excellent agreement between theory and numerical simulations. The outcome of this article is significant in physics to understand the mechanics of the motion of perpetual mechanical systems in the exact augmented perpetual manifolds, which is described through the kinetic energy changes and this gives further insight into the mechanics of particle-wave motions. Also, in mechanical engineering the outcome of this article is significant, because it is shown that the motion of the perpetual mechanical systems in the exact augmented perpetual manifolds is the ultimate, in the sense that there are no internal forces which lead to degradation of the internal structural elements, and there is no energy loss due to dissipation.

  相似文献   

14.
The single nanobelt simplified as transversely isotropic is modeled by three dimension element during the modeling of finite element method (FEM), and the mechanical constants of ZnS nanobelt are obtained by combining nanoindentation test and FEM. In the forward analysis, the numerical loading curves at the appropriate penetration depth are simulated by using the purely mechanical indentation (PMI) and piezoelectric indentation (PI) modes to extract the numerical maximum indentation load and numerical loading curve exponent, and they are used to establish the dimensionless equations related with the mechanical constants of nanobelt by fitting the mechanical constants vs numerical maximum indentation load and numerical loading curve exponent curves. In the reverse analysis, the experimental indentation curve performed on ZnS nanobelt is fitted as the power function to obtain the maximum indentation load and the loading curve exponent and they are substituted into the dimensionless equations to solve the mechanical constants of the nanobelt. In order to verify the validity, the mechanical constants are inputted into ABAQUS software to obtain the computational loading curves under PMI and PI modes, and they are in good agreement with the experimental indentation curve of ZnS nanobelt. The combination solutions of mechanical constants under PMI mode is of larger total error than those under PI mode, and it indicates that the piezoelectric effect should be reasonably considered into the developed method, which is effective to determine the mechanical property of single nanobelt.  相似文献   

15.
Effects of surface property on the static and fatigue strength of metal cylinders is determined by analysis of the redistribution of stress and energy density. Because the mechanical constraints on the material elements in a surface layer differ so drastically from those in the interior or bulk, changes of mechanical properties in a thin surface layer can significantly alter the global behavior of a metal part. Desirable gain in mechanical strength due to surface treatments such as laser spraying, ion implantation, etc. is now well known. Developed in this work is a method for evaluating the enhancement of the static and fatigue life of metals when their mechanical properties in a thin surface layer of material are improved. An extensive increase in the surface layer thickness does not lead to appreciable changes of mechanical strength.  相似文献   

16.
力学超材料是一类由人工微结构单元构筑的复合结构或复合材料, 具有天然材料所不具备的静力学/动力学性能. 由于这些超常特性通常取决于微结构单元而非材料组分, 这就为力学性能调控和结构功能材料设计提供了新思路. 本文在简述力学超材料概念的提出、发展及其超常力学性能的基础上, 以装备减振降噪工程需求为牵引, 重点探讨力学超材料在水声调控, 空气声吸隔声降噪, 结构减振抗冲设计等方面的应用探索及发展趋势, 为相关领域的科研及工程人员提供一定参考.   相似文献   

17.
《Comptes Rendus Mecanique》2019,347(9):615-625
Polymers are commonly found to have low mechanical properties, e.g., low stiffness and low strength. To improve the mechanical properties of polymers, various types of fillers have been added. These fillers can be either micro- or nano-sized; however; nano-sized fillers are found to be more efficient in improving the mechanical properties than micro-sized fillers. In this research, we have analysed the mechanical behaviour of silica reinforced nanocomposites printed by using a new 5-axis photopolymer extrusion 3D printing technique. The printer has 3 translational axes and 2 rotational axes, which enables it to print free-standing objects. Since this is a new technique and in order to characterise the mechanical properties of the nanocomposites manufactured using this new technique, we carried out experimental and numerical analyses. We added a nano-sized silica filler to enhance the properties of a 3D printed photopolymer. Different concentrations of the filler were added and their effects on mechanical properties were studied by conducting uniaxial tensile tests. We observed an improvement in mechanical properties following the addition of the nano-sized filler. In order to observe the tensile strength, dog-bone samples using a new photopolymer extrusion printing technique were prepared. A viscoelastic model was developed and stress relaxation tests were conducted on the photopolymer in order to calibrate the viscoelastic parameters. The developed computational model of nano reinforced polymer composite takes into account the nanostructure and the dispersion of the nanoparticles. Hyper and viscoelastic phenomena was considered to validate and analyse the stress–strain relationship in the cases of filler concentrations of 8%, 9%, and 10%. In order to represent the nanostructure, a 3D representative volume element (RVE) was utilized and subsequent simulations were run in the commercial finite element package ABAQUS. The results acquired in this study could lead to a better understanding of the mechanical characteristics of the nanoparticle reinforced composite, manufactured using a new photopolymer extrusion 5-axis 3D printing technique.  相似文献   

18.
The influence of dielectric, mechanical, and piezoelectric energy losses on the electroelastic characteristics of a piezoelectric transformer plate is analyzed. It is shown that only mechanical loss occurs at resonance frequencies  相似文献   

19.
结晶特性与制造工艺对炸药件力学性能的影响   总被引:1,自引:0,他引:1  
通过对塑料粘结炸药(PBX)在压制、热老化及贮存中炸药HMX、TATB和粘结剂F的性能变化规律的研究,揭示了加工和贮存条件对炸药件的力学性能的影响。得出如下结论:1)随着老化温度的提高,粘结剂F结晶度增加。TATB基PBX炸药经老化后力学性能没有明显变化,说明粘结剂结晶度和炸药颗粒度的变化对炸药总体性能影响不大。2)钢模压制的TATB基PBX药柱在经历多次温度循环后,TATB与粘结剂F界面的作用有所减弱,药柱内部产生由脱粘引起的缺陷,其力学强度下降。TATB基PBX药柱的力学强度与模量均随着环境温度的升高而呈下降趋势,而等静压成型能明显改善TATB基PBX的力学性能。  相似文献   

20.
Indentation is a simple and nondestructive method to measure the mechanical properties of soft materials, such as hydrogels, elastomers and soft tissues. In this work, we have developed a micro-indentation system with high-precision to measure the mechanical properties of soft materials, where the shear modulus and Poisson's ratio of the materials can be obtained by analyzing the load–relaxation curve. We have validated the accuracy and stability of the system by comparing the measured mechanical properties of a polyethylene glycol sample with that obtained from a commercial instrument. The mechanical properties of another typical polydimethylsiloxane sample submerged in heptane are measured by using conical and spherical indenters, respectively. The measured values of shear modulus and Poisson's ratio are within a reasonable range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号