首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用不同精度的差分格式将高维平稳FPK方程离散化为线性代数方程组,然后用超松弛迭代法求解该线性代数方程组得到平稳FPK方程的近似解。讨论了不同的差分格式、网格密度及超松弛因子对解精度及收敛速度的影响,并与其他方法的计算精度进行比较,提出用多重网格算法提高计算效率。研究了典型的二维及四维随机系统的稳态响应,算例表明,该算法具有简洁、节省存储量且精度高的特点,是求解高维平稳FPK方程解的有效算法。  相似文献   

2.
numerical study is reported for two-dimensional flow of an incompressible Powell-Eyring fluid by stretching the surface with the Cattaneo-Christov model of heat diffusion. Impacts of heat generation/absorption and destructive/generative chemical reactions are considered. Use of proper variables leads to a system of non-linear dimensionless expressions. Velocity, temperature and concentration profiles are achieved through a finite difference based algorithm with a successive over-relaxation (SOR) method. Emerging dimensionless quantities are described with graphs and tables. The temperature and concentration profiles decay due to enhancement in fluid parameters and Deborah numbers.  相似文献   

3.
A finite-volume method has been developed for the calculation of transonic, potential flows through 3-D turbomachinery blades with complex geometries. The exact transonic potential flow equation is solved on a mesh constructed from small volume elements. A transformation is introduced through which cuboids of the physical plane are mapped into computational cubes. Two sets of overlapping volumes are used. While the thermodynamic properties are calculated at the primary volume centres, the flux balance is established on the secondary volumes. For transonic flows an artificial compressibility term (upwind density gradient) is added to density to produce the necessary directional bias in the hyperbolic region. The successive point over-relaxation Gauss-Seidel method has been used to solve the non-linear partial differential equations. Comparisons with experiments and/or other numerical solutions for various turbomachinery configurations show that the 3-D finite-volume approach is a relatively accurate, reliable and fast method for inviscid, transonic flow predictions through turbomachinery blade rows  相似文献   

4.
This paper presents a parallel algorithm for the finite-volume discretisation of the Poisson equation on three-dimensional arbitrary geometries. The proposed method is formulated by using a 2D horizontal block domain decomposition and interprocessor data communication techniques with message passing interface. The horizontal unstructured-grid cells are reordered according to the neighbouring relations and decomposed into blocks using a load-balanced distribution to give all processors an equal amount of elements. In this algorithm, two parallel successive over-relaxation methods are presented: a multi-colour ordering technique for unstructured grids based on distributed memory and a block method using reordering index following similar ideas of the partitioning for structured grids. In all cases, the parallel algorithms are implemented with a combination of an acceleration iterative solver. This solver is based on a parabolic-diffusion equation introduced to obtain faster solutions of the linear systems arising from the discretisation. Numerical results are given to evaluate the performances of the methods showing speedups better than linear.  相似文献   

5.
We consider unsteady laminar natural convection flow of water subject to density inversion in a rectangular cavity formed by isothermal vertical walls with internal heat generation. The top and bottom horizontal walls are considered to be adiabatic, whereas the temperature of the left vertical wall is assumed to be greater than that of the right vertical wall. The equations are non-dimensionalized and are solved numerically by an upwind finite difference method together with a successive over-relaxation (SOR) technique. The effects of both heat generation and variations in the aspect ratio on the streamlines, isotherms and the rate of heat transfer from the walls of the enclosure are presented. Investigations are performed for water taking Prandtl number to be Pr=11.58 and the Rayleigh number to be Ra=105.  相似文献   

6.
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.  相似文献   

7.
We consider numerical solution of finite element discretizations of the Stokes problem. We focus on the transform-then-solve approach, which amounts to first apply a specific algebraic transformation to the linear system of equations arising from the discretization, and then solve the transformed system with an algebraic multigrid method. The approach has recently been applied to finite difference discretizations of the Stokes problem with constant viscosity, and has recommended itself as a robust and competitive solution method. In this work, we examine the extension of the approach to standard finite element discretizations of the Stokes problem, including problems with variable viscosity. The extension relies, on one hand, on the use of the successive over-relaxation method as a multigrid smoother for some finite element schemes. On the other hand, we present strategies that allow us to limit the complexity increase induced by the transformation. Numerical experiments show that for stationary problems our method is competitive compared to a reference solver based on a block diagonal preconditioner and MINRES, and suggest that the transform-then-solve approach is also more robust. In particular, for problems with variable viscosity, the transform-then-solve approach demonstrates significant speed-up with respect to the block diagonal preconditioner. The method is also particularly robust for time-dependent problems whatever the time step size.  相似文献   

8.
The present study aims to investigate the salient features of incompressible,hydromagnetic, three-dimensional flow of viscous fluid subject to the oscillatory motion of a disk. The rotating disk is contained in a porous medium. Furthermore, a time-invariant version of the Maxwell-Cattaneo law is implemented in the energy equation. The flow problem is normalized by obtaining similarity variables. The resulting nonlinear system is solved numerically using the successive over-relaxation method. The main results are discussed through graphical representations and tables. It is perceived that the thermal relaxation time parameter decreases the temperature curves and increases the heat transfer rate. The oscillatory curves for the velocity field demonstrate a decreasing tendency with the increasing porosity parameter values. Two-and three-dimensional flow phenomena are also shown through graphical results.  相似文献   

9.
Previous papers12 have drawn attention to the sustained oscillations (‘noise’) in the solution by successive over-relaxation of the equations from the finite difference approximation of regional groundwater flow including ephemeral streams. This paper shows that the trouble can be avoided by introducing an averaging step in the algorithm; the trouble can also be avoided by ‘under-relaxation’ but this is far less efficient than averaging.  相似文献   

10.
CMP流场的数值模拟及离心力影响分析   总被引:1,自引:0,他引:1  
化学机械抛光(chemical mechanical polishing,CMP)是一项融合化学分解和机械力学的工艺, 其中包含了流体动力润滑的作用.在已有润滑方程的基础上, 提出并分析了带有离心力项的润滑方程.利用Chebyshev加速超松弛技术对有离心力项的润滑方程进行求解,得到离心力对抛光液压力分布的影响. 数值模拟结果表明,压力分布与不带离心力项的润滑方程得出的明显不同;无量纲载荷和转矩随中心膜厚、转角、倾角、抛光垫旋转角速度等参数的变化趋势相同,但数值相差较大, 抛光垫旋转角速度越大差别越大.   相似文献   

11.
A fixed domain approach and a Baiocchi type transformation in conjunction with a modified Schwarz alternating iteration scheme are used to solve problems of flow past truncated convex shaped profiles between walls in a logarithmic hodograph plane. The flows are such that an open wake or cavity is formed behind the profile. The basic numerical scheme consists of the successive over-relaxation finite difference approach over the whole domain of the problem with the use of a projection operation over only part of the domain. The numerical results that are obtained using this approach for the cases of a truncated circular arc profile and a wedge profile are compared with published results and are found to be in good agreement.  相似文献   

12.
The interaction of solitary waves with multiple, in-line vertical cylinders is investigated. The fixed cylinders are of constant circular cross section and extend from the seafloor to the free surface. In general, there are N of them lined in a row parallel to the incoming wave direction. Both the nonlinear, generalized Boussinesq and the Green–Naghdi shallow-water wave equations are used. A boundary-fitted curvilinear coordinate system is employed to facilitate the use of the finite-difference method on curved boundaries. The governing equations and boundary conditions are transformed from the physical plane onto the computational plane. These equations are then solved in time on the computational plane that contains a uniform grid and by use of the successive over-relaxation method and a second-order finite-difference method to determine the horizontal force and overturning moment on the cylinders. Resulting solitary wave forces from the nonlinear Green–Naghdi and the Boussinesq equations are presented, and the forces are compared with the experimental data when available.  相似文献   

13.
An efficient method for the simulation of strained heteroepitaxial growth with intermixing using kinetic Monte Carlo is presented. The model used is based on a solid-on-solid bond counting formulation in which elastic effects are incorporated using a ball and spring model. While idealized, this model nevertheless captures many aspects of heteroepitaxial growth, including nucleation, surface diffusion, and long-range effects due to elastic interaction. The algorithm combines a fast evaluation of the elastic displacement field with an efficient implementation of a rejection-reduced kinetic Monte Carlo based on using upper bounds for the rates. The former is achieved by using a multigrid method for global updates of the displacement field and an expanding box method for local updates. The simulations show the importance of intermixing on the growth of a strained film. Further, the method is used to simulate the growth of self-assembled stacked quantum dots.  相似文献   

14.
碳氢燃料点火燃烧的简化化学反应动力学模型   总被引:3,自引:1,他引:3  
基于``准稳态'方法建立了一套复杂化学反应动力学模型简化方法和相应的软件SPARCK. 并以3种典型的碳氢燃料------甲烷、乙烯和庚烷为研究对象,从甲烷点火燃烧的GRI2.11详 细基元反应动力学模型出发简化得出了包含14个组分10步总包反应形式的简化化学反应动 力学模型,从乙烯燃烧的51组分365详细基元反应模型出发简化得出了包含20个组分16 步总包反应形式的简化化学反应动力学模型,从庚烷点火燃烧的160组分1540详细基元反 应模型出发简化得出了包含26个组分22步总包反应形式的简化化学反应动力学模型. 通过 对典型激波管试验的结果对比可以看出:得到的简化反应动力学模型能较为有效地再现 详细基元反应模型的反应机理,具有较高的计算精度. 在工程计算中有较好的应用前景.  相似文献   

15.
16.
Stefano Pasquero 《Meccanica》2012,47(1):235-244
A method to determine the impulsive reaction exerted by an internal bilateral constraint acting on a system colliding with an external unilateral ideal constraint is presented. The method has its rationale on the superposition principle and is based on the results of Geometric Impulsive Mechanics for ideal systems. It can be applied to systems subject to both positional and kinetic permanent constraints colliding with both positional and kinetic instantaneous constraints. Applications of the method to physically meaningful examples are presented and discussed.  相似文献   

17.
The kinetic equation proposed in [1,2] for describing the behavior of a system of particles in a gas flow differs from the usual Boltzmann equation with respect to the additional terms that take into account random variations of the particle velocity under the influence of the flow. As shown in [2], the collision operator and the Brownian-type operator in the starting kinetic equation describe essentially different simultaneous physical processes of change of state of the particle system: equalization of the mean kinetic energy of the particles and change of energy due to the action of the viscous forces associated with the suspending flow. Therefore the method of solving the kinetic equation used in [2], a direct generalization of the Chapman-Enskog method of solving the kinetic equation it is necessary to investigate method of solving the kinetic equation it is necessar y to investigate the relaxation processes in the system. Moreover, the relaxation of systems of the fluidized-bed type to the continuum state is also of independent interest in connection with the analysis of fast processes in the system, i.e., processes with a characteristic duration of the order of the mean free time.  相似文献   

18.
In this paper, an analytical procedure for the determination of the dynamic parameters of a remainder body after mass separation is developed. The method is based on the general principles of momentum and angular momentum of a body and system of bodies. The kinetic energy of motion of the whole body and also of the separated and remainder body is considered. The derivatives of kinetic energies with respect to the generalized velocity determine the velocity and angular velocity of the remainder body. To confirm the proposed procedure, the results are compared with those obtained using the method of momenta and angular momenta. In the paper, the theorem about increase of kinetic energies of the separated and remainder bodies for perfectly plastic separation is proved. The increase of the kinetic energies correspond to the relative velocities and angular velocities of the separated and remainder bodies. As an example, the mass separation from a pendulum is considered. The kinematic properties of the remainder pendulum are obtained using the analytic procedure. The results are in agreement with those obtained by applying the basic principles of Newton’s mechanics.  相似文献   

19.
A finite element method has been applied to predict the overall features of the fully developed turbulent flow in the non-circular channels of a rod bundle. The finite element discretization is based on the conventional Galerkin method using an isoparametric quadrilateral element with mixed interpolation. The primary axial flow and turbulent kinetic energy distributions have been predicted for fully developed turbulent flow conditions right up to the wall. The secondary velocity is represented by the stream function-vorticity formulation and the no-slip boundary conditions are explicitly introduced in the nonlinear equations by a boundary vorticity formula. The Newton-Raphson method is applied to the stream function-vorticity equations and solved simultaneously by the frontal solution technique. A one-equation eddy viscosity model of turbulence and an algebraic stress transport model have been used to predict primary axial velocity, secondary velocities and turbulent kinetic energy. The predictions obtained for a central subchannel of an equilateral-triangular rod array with p/d= 1.3 are in reasonable agreement with experimental data.  相似文献   

20.
Transient analysis has been investigated numerically to determine heat transfer by natural convection between concentric and vertically eccentric spheres with constant heat flux on the inner wall and a specified isothermal temperature on the outer wall. The governing equations, in terms of vorticity, stream function and temperature are expressed in a spherical polar coordinate system. The alternating direction implicit method and the successive over-relaxation techniques are applied to solve the finite difference form of governing equations. A physical model is introduced which accounts for the effects of fluid buoyancy as well as eccentricity of the outer sphere. Transient solutions of the entire flow field are obtained for a range of modified Rayleigh number (103<Ra?<5×105), for a Prandtl number of 0.7 and a radius ratio of 2.0, with the outer sphere near the top and bottom of the inner sphere (ε=±0.625). Results of the parametric study conducted further reveal that the heat and flow fields are primarily dependent on the modified Rayleigh number and the eccentricity of the spherical annulus. The results of average Nusselt numbers are also compared with the results obtained for flow between two isothermal spheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号