首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
由于高维、非线性、欠驱动等特点,3-D双足机器人的稳定性控制依然是一个研究难点.一些传统的控制方法,如基于事件的反馈控制方法和PD控制方法,抗扰动能力较弱,鲁棒性较差.通过观察,人类受到外部扰动影响时,会通过调整步态重新获得稳定性,相较之下仅依靠一个步态获得的稳定性是有限的.受此启发,本文针对上述问题提出一种基于步态切换的欠驱动3-D双足机器人控制方法.首先,以能耗最少为优化目标,通过非线性优化方法预先设计多组不同步长、步速的步态作为参考步态,以构建一个步态库;然后,通过综合考虑步态切换过程中的稳定性与能效,建立了多目标步态切换函数;最后,将该步态切换函数作为优化目标,并求解该最小化问题获得下一步的参考步态,从而实现步态切换,达到使用步态库-多轨迹方法来提高鲁棒性的目的.在仿真实验中运用该步态切换控制方法,欠驱动3-D双足机器人可实现相对高度在[-20,20]mm内随机变化的不平整地面上行走,而仅采用单步态控制策略则无法克服这样的外部扰动,从而说明了基于步态切换的欠驱动双足机器人控制方法的有效性.  相似文献   

2.
研究了变刚度半被动双足机器人行走控制问题。采用仿人的行走控制策略,使用变刚度双足弹簧负载倒立摆模型,利用模型自稳定性,在双支撑阶段调整后腿刚度使机器人的能量保持在期望能量附近,在单支撑阶段调整摆动腿落地位置控制质点的高度和前向速度。仿真结果表明:本文采用的控制策略可以实现双足机器人在水平面上的稳定行走,无扰动时可以使机器人实现零输入的被动周期行走,有外部扰动时腿部变刚度控制可使机器人总能量恢复平衡并重新进入稳态行走,控制系统具有鲁棒性。  相似文献   

3.
为了快速分析非均质材料结构在复杂载荷作用下的动态响应, 提出一种模型降阶方法, 只需计算结构在简单均质材料情况下的动力学问题, 进而用其计算结果对非均质材料结构进行分析. 首先, 采用结构内部任意一点处的材料参数值作为整个结构的材料参数, 利用有限元分析软件计算该均质材料结构在动态载荷作用下的位移场建立数据库, 该数据库包含计算模型各个节点(自由度为L)在某时间段内L个时刻的位移; 其次, 对数据库中的信息按照时间离散的特定方式组集成瞬像矩阵, 并利用特征正交分解方法对其进行分解, 得到该模型的H个特征正交基底, 选取其中能反应模型主要特征的H<L?N个(其中~)作为一组最优基底, 通过这组基底建立模型的低阶离散控制方程; 最后, 求解低阶离散微分方程组, 得到功能梯度材料结构在复杂载荷作用下的位移场. 文中分别给出二维和三维算例, 比较了降阶模型和全阶模型计算结果, 验证了该方法的有效性, 并且计算效率能提高1 1)2个数量级.   相似文献   

4.
余文韬  黄佩珍 《力学学报》2018,50(4):828-836
随着微电子技术的迅猛发展, 集成电路中内连导线的失效问题引起广泛关注. 内连导线内部孔洞萌生、长大、漂移和失稳变形成狭长裂纹, 从而导致电路的开路失效. 这是内连导线失效的常见形式. 而界面迁移是导致微结构形态演化的主要机制之一. 本文基于界面迁移下微结构演化的经典理论和弱解描述, 建立了应力诱发界面迁移下微结构演化的有限单元法, 并验证了算法的可靠性. 对铜内连导线中晶内孔洞的演化进行了数值模拟, 详细分析了应力、线宽及形态比对晶内孔洞演化的影响. 研究结果表明, 椭圆形晶内孔洞存在生长和收缩两种演化分叉趋势. 通过大量数值分析得到了晶内孔洞演化的临界应力σ?c 、临界线宽h?c 和临界形态比βc . 当h??h?c, σ?h? 时, 晶内孔洞会沿长轴长大; 反之, 晶内孔洞会收缩甚至愈合. 此外, 应力β 越大、线宽σ? 越小或形态比h? 越大, 晶内孔洞越易发生长大, 且孔洞面积增大速度越快; β 越小、σ? 越大或h? 越小, 晶内孔洞越易发生收缩, 且孔洞面积减小速度越快.   相似文献   

5.
错列角度对双圆柱涡激振动影响的数值模拟研究   总被引:1,自引:0,他引:1  
为研究错列角度α对双圆柱涡激振动问题的影响,采用自主研发的基于CIP (constrained interpolation profile)方法的数值模型,对雷诺数Re=100、错列角度α=0°~90° (间隔15 #x00B0;)的等直径双圆柱涡激振动问题进行数值模拟. 模型在笛卡尔网格系统下建立,采用具有三阶精度的 CIP 方法求解 N-S (Navier--Stokes)方程,采用浸入边界法处理流--固耦合问题,避免了任意拉欧方法下的网格畸变和重叠动网格技术中的大量信息交换问题,保证了模型的计算效率. 重点分析不同错列角度α上下游圆柱的升阻力系数、位移响应、涡脱频率和尾涡模态等. 结果表明:折合速度Ur=2.0~3.0时,上下游圆柱升阻力随错列角度的增大基本呈单调增大的趋势;Ur=5.0~8.0时,随错列角度的增大,上下游圆柱阻力变化较小,升力呈“上凸”趋势,在α=15°~30°取得最大值;Ur=10.0~13.0时,随错列角度的增大,上下游圆柱阻力变化较小,升力呈“下凹”趋势,在α=30°~45°取得最小值,且柱体横流向振幅和升力没有明显的对应关系. 最后,结合尾涡模态对以上规律的成因进行分析. 研究结果可为相关海洋工程设计提供参考.   相似文献   

6.
高雷诺数下多柱绕流特性研究   总被引:1,自引:0,他引:1  
采用改进的延迟分离涡方法数值模拟了高雷诺数下的柱体绕流,包括单圆柱绕流、单方柱绕流、串列双圆柱绕流和串列双方柱绕流,研究了不同雷诺数下圆柱绕流与方柱绕流的水动力特性. 计算结果与实验数据及其他文献的数值计算结果吻合良好,研究表明,单方柱绕流在2.0×103<Re<1.0×107范围内未出现类似于单圆柱绕流的阻力危机现象,其平均阻力系数Cdˉ、升力系数均方根C'l及斯特劳哈尔数St维持在一定范围内波动. 串列双圆柱绕流与串列双方柱绕流中,均选取L/D=2.0, 2.5, 3.0, 3.5和4.0这五中间距比进行计算. 串列双圆柱绕流中,当Re=2.2×104时,在3.0<L/D<3.5内存在一临界间距比(Lc/D)使得Lc/D前后上下游圆柱的升阻力系数发生跳跃性变化,且当L/D<Lc/D时,下游圆柱的阻力系数为负数. 而当Re=3.0×106时,则不存在临界间距比,且下游圆柱的阻力系数始终为正数. 串列双方柱绕流在Re=1.6×104Re=1.0×106两种工况下的临界间距比分别处于3.0<L/D<3.53.5<L/D<4.0区间内,且当L/D<Lc/D时,两个雷诺数下的下游方柱阻力系数均为负数.   相似文献   

7.
复杂加载条件下的砂土本构模型   总被引:2,自引:0,他引:2  
万征  孟达 《力学学报》2018,50(4):929-948
试验表明,饱和砂土的应力应变关系具有显著的密度以及压力依存性,上述两点构成了描述砂土静力加载下变形特性无法忽视的因素. 此外,在循环加载等复杂加载作用下,砂土还会表现出明显的应力诱导各向异性以及相变转换特性. 基于在e--p空间中存在唯一的临界状态线这一基本假定,通过在e--p空间中引入当前状态点与临界状态线的距离R来作为反映密度与压力依存特性的状态参量, 将变相应力比以及峰值应力比表达为状态参量的指数函数,将上述应力比参量引入到统一硬化参量中可准确地反映初始状态下围压、密度 对于单调加载下应力应变关系的影响规律,能描述砂土剪缩、剪胀,应变软化、硬化等特性. 采用非相关联流动法则,p--q空间中采用水滴型屈服面,塑性势面为椭圆面,松砂在单调加载下的静态液化现象也可描述. 为反映循环加载下塑性体积应变的累积特性以及塑形偏应变的滞回特性,在循环加载下将状态参量R表达为应力比参量,并在硬化参数中引入描述应力诱导各向异性特性的旋转硬化部分,所提模型可有效地描述循环加载下剪切模量的衰减特性、刚度衰化性质、强度减小特性,在不排水约束作用下,则会产生往返活动性现象. 通过一系列的模型模拟与试验结果对比,验证了本构模型的有效性及适用性.   相似文献   

8.
刘赵淼  王文凯  逄燕 《力学学报》2018,50(2):254-262
微混合器凭借节约试剂、混合强度高和易于集成等优点,在材料合成、医药制备和生化检测等领域中具有广泛的应用. 为了进一步提高混合性能,保证混合过程的安全性及生化反应结果的准确性,设计了一种带扩展腔的新型方波型微混合器. 在综合考虑混合强度和压降的前提下,通过实验研究和数值模拟分析了窄缝宽度、窄缝长度和扩展腔高度对微混合器混合性能的影响并得到了不同雷诺数Re条件下的最优结构参数. 与方波型微混合器的混合性能进行比较,发现Re=20时,带扩展腔的方波型微混合器的混合强度更高,其中Re时两者混合强度相差最多,可达12%. 在相同Re下,带扩展腔的方波型微混合器的压降要低于方波型微混合器. 对带扩展腔的方波型微混合器进行内部流场分析,发现扩展腔结构能在流体层流状态的基础上引入涡流,使通道中流体的流动状态发生改变、对流增强,进而混合性能提高.   相似文献   

9.
丁洲祥 《力学学报》2018,50(4):908-928
经典Terzaghi一维固结理论不考虑孔隙流体惯性影响,且该理论在不同时期模型推导和表述结果差别较大,导致当前仍存在诸多困惑甚至认识混乱的现象. 在笔者前期研究大变形动力固结理论框架内,忽略固相惯性而重点考虑液相惯性影响,经过合理简化建立反映孔隙流体惯性的一维小变形固结波动模型. 该固结波模型具有频散和耗散特性. 采用分离变量法,可得到单面排水和瞬时加载条件下无量纲形式固结波解析解答. 算例分析结果表明:固结波发展规律受无量纲数Dc变化影响而呈现不同性态;Dc数值较大时固结波响应会出现阶跃和正负波动现象;当Dc值较小时,可能出现Mandel-Cryer效应等特殊现象. 通过对早期和后期Terzaghi固结模型的分析和对比,初步探明Terzaghi固结理论模型内部的矛盾性,在普通土体坐标和固相体积坐标两种不同解读条件下,早期Terzaghi (1923,1925)模型可以分别诠释为具有小变形和大变形属性的不同固结模型. 在经典一维固结理论模型的不同诠释背景下,固结波模型也可以据此作出相应拓展和表述. 固结波理论揭示缩尺固结试验中土体物理力学参数与固结波响应两种因素之间存在一种不确定性矛盾,据此建议微观土力学研究重视尺度效应. 固结波模型的意义还在于,可为Terzaghi经典固结模型理论精度分析提供新的依据.   相似文献   

10.
弹簧负载倒立摆模型是一种典型的双足行走模型,已经成为研究机器人类人行走的基础。本文在此模型的基础上进行了扩展,通过添加刚性躯干、脚质量及采用变长度伸缩腿,充分考虑了躯干及摆动腿动力学对机器人行走步态的影响。首先,利用欧拉–拉格朗日法推导了动力学方程。其次,设计了反馈线性化控制器来跟踪目标轨迹,以及调节摆动腿和躯干的姿态。第三,提出了步态切换策略,通过控制腿部长度和髋关节力矩来实现步态切换,从而改变平均行走速度。最后,通过计算机仿真验证了该方法的有效性。仿真结果表明:该控制策略能够有效地跟踪系统的期望轨迹及实现两种自然步态之间的切换,并形成稳定的极限环,实现机器人的稳定行走。  相似文献   

11.
高自由度双足机器人数学模型及步行控制研究   总被引:1,自引:0,他引:1  
基于ZMP理论及位姿矩阵,采用了相对重心以及相对坐标系的数学描述方法,对17自由度双足机器人步行稳定性控制进行数学建模研究.所建立的数学模型能够描述机器人稳定性控制.并经过Matlab数学计算和仿真研究,验证了所建立的模型可以描述双足机器人的步行规律,在理论上达到了双足机器人步行稳定性的控制目的.最后通过VC 把整个模型封装成一个可视化系统,便于将所研究的模型应用到实际的控制中,为未来机器人的实时控制的研究提供了技术支持.  相似文献   

12.
张奇志  张瑞  周亚丽 《力学季刊》2020,41(3):430-440
 研究单足机器人周期跳跃控制问题.弹簧支撑倒立摆模型可以比较准确地描述动物的跳跃行为,但无控制的自然跳跃抗干扰能力较差,一般采用轨迹跟踪控制方法实现单足机器人周期跳跃.当系统存在比较大的误差时,传统的时间轨迹跟踪控制方法存在明显的不足.引入虚拟约束技术,采用基于空间路径跟踪的控制方法可以克服时间轨迹跟踪的不足.采用点足机器人模型,并通过控制腿伸缩的方式为系统提供动力,将跳跃过程分为地面摆动和腾空飞行两个阶段,并通过起飞和着陆两个事件完成两个阶段之间的转换,整个系统模型属于欠驱动非光滑动力学系统.根据简化的动力学方程获得系统的虚拟约束解析表达式,并采用部分反馈线性化方法结合PD 控制设计系统的控制律.分析了系统的混合零动力学方程,并证明了闭环系统的临界稳定性.仿真结果表明,提出的控制方法可以实现单足机器人的周期跳跃控制,并且对外部干扰具有较强的鲁棒性.  相似文献   

13.
The use of a proposed recurrent neural network control system to control a four-legged walking robot is presented in this paper. The control system consists of a neural controller, a standard PD controller, and the walking robot. The robot is a planar four-legged walking robot. The proposed Neural Network (NN) is employed as an inverse controller of the robot. The NN has three layers, which are input, hybrid hidden and output layers. In addition to feedforward connections from the input layer to the hidden layer and from the hidden layer to the output layer, there is also a feedback connection from the output layer to the hidden layer and from the hidden layer to itself. The reason to use a hybrid layer is that the robot’s dynamics consists of linear and nonlinear parts. The results show that the neural-network controller can efficiently control the prescribed positions of the stance and swing legs during the double stance phase of the gait cycle after sufficient training periods. The goal of the use of this proposed neural network is to increase the robustness of the control of the dynamic walking gait of this robot in the case of external disturbances. Also, the PD controller alone and Computed Torque Method (CTM) control system are used to control the walking robot’s position for comparison.  相似文献   

14.
研究了半被动双足机器人的平面稳定行走的控制问题.基于弹簧质点模型,采用拉格朗日方法分别得到双足机器人单支撑阶段与双支撑阶段的动力学方程,对机器人系统的动力学方程求得周期解.应用非线性系统状态反馈线性化理论,在双足机器人的单支撑阶段和双支撑阶段中,通过控制双足机器人的腿长度,实现稳定的周期行走.在理论分析的基础上,对控制算法进行了仿真与研究.结果表明:在周期行走过程中,文中采用的变长度控制算法可以使双足机器人克服外界的干扰,并具有较强的抗干扰性.  相似文献   

15.
This paper investigates the problem of nonlinear path following control of underactuated marine vehicles in the horizontal plane. Firstly, appropriate kinematic and dynamic models are established, where the kinematic model is developed in terms of the relative velocity with respect to the ocean current disturbances, and the dynamic model is developed to include the effects of wind and wave disturbances. Based on the time delay control method and the reduced-order linear extended state observer (LESOs) technique, an improved compound line-of-sight (CLOS) guidance law is first proposed which can estimate the unknown sideslip angle and can compensate for the effects of time-varying ocean currents. Secondly, the control law is decomposed into the kinematic and dynamic controllers by the back-stepping technique. The high-order tracking differentiator is applied to construct derivatives of desired yaw angle, which are calculated by the CLOS guidance law. This approach resolves the problem of computational complexity inherent in the traditional back-stepping method and simplifies the overall controller. The lumped disturbances caused by waves and wind are estimated and compensated by the reduced-order LESOs. Finally, stability analysis of the closed-loop system is performed. The simulation results and comparative analysis validate the effectiveness and robustness of the proposed control approach.  相似文献   

16.
In passive dynamic walking proposed by McGeer, mechanical energy lost by heel strike is restored by transporting potential energy to kinetic energy as walking down a slope. When energy input is larger as a slope is steeper, the bifurcation of a walking cycle occurs. In the parametric excitation walking, which is to realize passive dynamic-like walking on the level ground, the bifurcation of a walking cycle has also been observed when walking speed is fast. Recently, Asano et al. have shown that bifurcation exerts an adverse influence upon walking performance by using a rimless wheel model. In this paper, we apply the delayed feedback control (DFC), originally used in chaos control, to parametric excitation walking to suppress bifurcation. We show in numerical simulation that the proposed method makes period-two walking to period-one walking, and improves energy efficiency. In addition, the proposed method can generate a sustainable gait in the region where a biped robot cannot walk without DFC. The analyses using a Poincaré map reveal that period-one walking with DFC corresponds to an unstable periodic orbit and reveal that a robot model in this paper satisfies the sufficient condition of applicability of DFC.  相似文献   

17.
For underactuated overhead cranes with payload hoisting/lowering, a partially saturated adaptive controller subject to unknown or uncertain system parameters is presented in this paper. To decrease the convergence time in the case of the overhead crane parameters already experienced by the system, the learning component is added to the proposed partially saturated adaptive controller. By introducing hyperbolic tangent functions into the control methods, the proposed controllers can guarantee soft trolley start even in the case of high initial velocities of trolley and cable. The convergence and stability performance of the closed-loop system is proven by Lyapunov techniques and LaSalle’s invariance theorem. Simulation results are listed to verify the adaptive performance with reduced actuating forces and strong robustness with respect to different external disturbances of the proposed controllers.  相似文献   

18.
Control of the autonomous bicycle robot offers considerable challenges to the field of robotics due to its nonholonomic, underactuated, and nonminimum-phase properties. Furthermore, instability and complex dynamic coupling make the trajectory planning of the bicycle robot even more challenging. In this paper, we consider both trajectory planning and tracking control of the autonomous bicycle robot. The desired motion trajectory of the contact point of the bicycle’s rear wheel is constructed using the parameterized polynomial curve that can connect two given endpoints with associated tangent angles. The parameters of the polynomial curve are determined by minimizing the maximum of the desired roll angle’s equilibrium of the bicycle, and this optimization problem is solved by the particle swarm optimization algorithm. Then, a control scheme that can achieve full-state trajectory tracking while maintaining the bicycle’s balance is proposed by combining a planar trajectory tracking controller with a roll angle balance controller. Simulation results are presented to demonstrate the effectiveness of the proposed method.  相似文献   

19.
Znegui  Wafa  Gritli  Hassène  Belghith  Safya 《Nonlinear dynamics》2020,101(2):1061-1091
Nonlinear Dynamics - The compass-gait biped robot is a two-DoF legged mechanical system that has been known by its passive dynamic walking. This kind of passive biped robot is modeled by an...  相似文献   

20.
The dynamics of classical robotic systems are usually described by ordinary differential equations via selecting a minimum set of independent generalized coordinates. However, different parameterizations and the use of a nonminimum set of (dependent) generalized coordinates can be advantageous in such cases when the modeled device contains closed kinematic loops and/or it has a complex structure. On one hand, the use of dependent coordinates, like natural coordinates, leads to a different mathematical representation where the equations of motion are given in the form of differential algebraic equations. On the other hand, the control design of underactuated robots usually relies on partial feedback linearization based techniques which are exclusively developed for systems modeled by independent coordinates. In this paper, we propose a different control algorithm formulated by using dependent coordinates. The applied computed torque controller is realized via introducing actuator constraints that complement the kinematic constraints which are used to describe the dynamics of the investigated service robotic system in relatively simple and compact form. The proposed controller is applied to the computed torque control of the planar model of the ACROBOTER service robot. The stability analysis of the digitally controlled underactuated service robot is provided as a real parameter case study for selecting the optimal control gains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号