首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以平面波理论为基础,推导了无限平板在全入射角度下的冲击波壁压载荷计算公式,利用实验数据对壁压公式进行修正,提出了一种适用于计算有限尺度平板壁压的经验公式;分析了不同入射角度下壁压载荷的变化特性,初步研究了壁压载荷负压特性对平板局部空化的影响。结果表明:修正后的壁压曲线与实际壁压曲线吻合较好;入射角度的增大会加快壁压衰减过程,并使最低壁压的绝对值减小;随着药量或平板厚度的增加,壁压最低负压的绝对值增大,形成局部空化的能力增强;局部空化仅在一定条件范围内才会形成,空化范围受局部空化形成压力及冲击强度等因素的影响较大。  相似文献   

2.
液体的爆炸抛撒特征   总被引:3,自引:0,他引:3  
针对液体爆炸抛撒过程设计了实验装置,利用高速摄像仪进行记录。通过研究不同中心装药量和 填充液体的抛撒过程,发现在壳体破裂后,液体沿裂缝处向外飞散。药量较小时,液体分散成树枝状形态,然 后破碎成液滴;药量较大时,则形成液体环状区。对于不同粘度的液体,环状区分别由小液滴及已雾化、汽化 的液体,或大液滴、液体丝及液膜等组成,抛撒过程中其宽度越来越大,大液滴、液体丝及液膜等也逐渐破碎成 细小的液滴。  相似文献   

3.
球面冲击波作用下船体梁整体运动的简化理论模型   总被引:1,自引:0,他引:1  
为了研究水下爆炸冲击波作用下,船体结构的局部变形以及局部变形引起的船体整体运动响应, 将船体简化为理想刚塑性等截面直梁,考虑流固耦合效应,推导了梁所受冲击波载荷的理论计算公式,并进行 了试验修正。以炸药在船体中部正下方爆炸的工况为研究对象,将球面冲击波作用于船体的过程,简化为一 系列移动、短时的局部平面波加载过程的叠加,提出了一种计算船体梁在任何爆距条件下发生总体塑性运动 响应的理论方法,最后利用船体梁模型试验对该方法进行了验证。结果表明:所建立的冲击波作用下船体梁 整体运动响应模型能够反映船体梁结构在冲击波作用下的塑性运动过程;在冲击波作用时间内,以船体梁中 点的运动情况为例,其存在先向上、后向下的往返运动过程;与造成的局部变形相比,冲击波造成梁整体运动 变形的作用较小。  相似文献   

4.
激波诱导瓦斯爆炸的动力学特性及影响因素   总被引:1,自引:0,他引:1  
梁运涛  曾文 《爆炸与冲击》2010,30(4):370-376
通过修改化学动力学计算软件CHEMKIN Ⅲ中的SHOCK 程序包,建立了激波管中激波诱导瓦 斯爆炸过程的计算模型,化学反应采用了详细反应机理(包括53种组分、325个反应)。对激波诱导瓦斯爆炸 过程中混合气温度、冲击波传播速度、反应物(甲烷、氧气)摩尔分数、活化中心(O、H)摩尔分数、部分致灾性 气体(CO、CO2、NO、NO2)摩尔分数的变化趋势进行了详细分析。同时,分析了瓦斯爆炸前混合气初始压力 及初始混合气组成对激波诱导瓦斯爆炸动力学特性的影响。结果表明:瓦斯爆炸后CO 的摩尔分数达到0. 07左右,CO2 的摩尔分数为0.02左右,NO 的摩尔分数为0.001左右,NO2 的摩尔分数则在10-6左右;随着 瓦斯爆炸前混合气初始压力的提高以及混合气中甲烷体积分数的降低,瓦斯引爆时间将缩短,爆炸后温度将 降低,但压力将升高,同时,爆炸后CO 的摩尔分数将降低,NO 的摩尔分数将提高。  相似文献   

5.
为研究水下爆炸载荷作用下潜艇结构的动力屈曲现象,以潜艇耐压结构的简化模型环肋加筋圆 柱壳结构为研究对象,建立流固耦合有限元分析模型,应用瞬态有限元分析程序MSC.Dytran对该结构在水 下爆炸冲击载荷作用下的弹塑性动力屈曲行为进行研究,基于Budiansky-Roth准则和Southwell方法确定环 肋加筋圆柱壳结构的临界屈曲载荷,讨论结构动力屈曲的影响因素如载荷强度、网格密度、径厚比、长径比、加 筋截面间距、加筋尺寸等对环肋加筋圆柱壳结构动屈曲模态和临界屈曲载荷的影响。结果表明:采用建立的 流固耦合有限元分析模型,应用动力瞬态有限元软件MSC.Dytran可以对加筋圆柱壳结构的动力屈曲行为进 行模拟,模型网格尺寸大小、结构几何参数对结构的动力屈曲临界载荷都有一定的影响,其中加筋圆柱壳结构 的径厚比对结构的动力屈曲临界载荷影响最为显著。  相似文献   

6.
泡沫金属在冲击载荷下的动态压缩行为   总被引:1,自引:0,他引:1  
基于微CT扫描影像信息,建立泡沫金属材料二维细观有限元模型,考虑不规则胞孔的不均匀分布,根据实验结果拟合孔壁材料的弹塑性本构参数。研究了泡沫金属在不同加载速度下的压缩变形机理,重点讨论泡沫金属中弹塑性波的传播、惯性效应和从冲击端传递到静止端的应力变化特征。对于相对密度为0.3的泡沫铝,弹性波速约为5 km/s,与孔壁材料的弹性波速相当,塑性波速表现为随着加载速度的增大而增大。在加载速度为50~100 m/s间变形模式从准静态模式转变为动态模式,未发现明显的临界速度,动态锁死应变随着加载速度的增大而增大。由于塑性波发生反射,试件会发生二次压缩过程,相应地,静止端产生二次应力平台。受惯性作用的影响,二次应力平台也随着加载速度的增大而提高。  相似文献   

7.
Book reviews     
Book reviewed in this article:
By J.S. Rao and D.V. Dukkipati, John Wiley and Sons
Reviewed by H. Rajiyah, The Center for the Advancement of Computational Mechanics, The Georgia Institute of Technology, Atlanta, GA 30332-0356.
By P.L.B. Oxley, Ellis Horwood Limited, West Sussex, England
Reviewed by H. Rajiyah, The Center for the Advancement of Computational Mechanics
By Herbert Reismann, published by John Wiley and Sons
Reviewed by J.S. Epstein, The Center for the Advancement of Computational Mechanics
Edited by T.A. Cruse, ASTM STP 969, published by the American Society for Testing and Materials
Reviewed by J.S. Epstein, The Center for the Advancement of Computational Mechanics, The Georgia Institute of Technology, Atlanta, GA 30332-0355.
By S.P. Shah and S.E. Swartz, Springer Verlag
Reviewed by J.S. Epstein, The Center for the Advancement of Computational Mechanics, The Georgia Institute of Technology, Atlanta, GA 30332-0355.
Published by The American Society for Testing and Materials, Philadelphia
Reviewed by M.A. Abdallah, Hercules Aerospace  相似文献   

8.
泡沫铝爆炸冲击特性的数值研究   总被引:1,自引:0,他引:1  
基于流体弹塑性模型,建立了泡沫铝在爆炸载荷下的冲击特性方程。采用Lagrange差分格式,在 均匀网格上对方程进行了离散。编写了数值计算程序,进行了炸药在空中和水中爆炸的一维数值计算。爆炸 场中考虑了泡沫铝密度、环境介质对泡沫铝材料冲击特性的影响。结果表明:数值计算结果与理论解、实验实 测结果基本吻合,证明所建立的泡沫铝的流体弹塑性本构方程可以用来描述泡沫铝的冲击特性;泡沫铝的密 度越低,泡沫铝中的压力峰值越小;在接触爆炸条件下,泡沫铝外侧环境介质的性质对临近环境介质端泡沫铝 中的压力影响明显,其中,环境介质若为空气,则临近空气端泡沫铝中的压力呈下降趋势,若环境介质为水,则 临近水端泡沫铝中的压力呈上升趋势。  相似文献   

9.
吴昊  方秦  龚自明 《爆炸与冲击》2012,32(6):573-580
基于动力球型空腔膨胀理论和冲击成坑+钻孔区两阶段侵彻模型,以截卵形弹头弹体为例,运 用曲面积分,引入表征弹头形状和弹靶摩擦效应的量纲一系数、质量比和冲击因子,提出了综合考虑弹头形状 变化、成坑区深度、弹靶摩擦阻力的混凝土和岩石靶体的刚性弹垂直侵彻深度的计算公式。该公式在相关参 数取特殊值时,可退化为经典的侵彻深度计算公式。通过与8组不同弹头形状弹体冲击混凝土和岩石靶体的 侵彻实验数据、已有10个(半)经验公式计算结果对比,验证了本文公式的适用性。并结合实验和参数影响分 析,给出了混凝土和岩石靶体的弹靶摩擦系数和与冲击因子相关的不同弹头形状弹体成坑系数的建议值。  相似文献   

10.
磁敏弹性膜是一种新型的智能材料,其力学、电学、磁学、声学等性质能够受外加磁场的控制,从而在多个领域展现在广泛的应用前景。本文首先从材料设计、制备工艺、结构设计等方面综述了磁敏弹性膜的研制方法,随后详细阐述了磁敏弹性膜的力学、电磁、声学等性能表征及内部机理,最后介绍了磁敏弹性膜在传感器、执行器、柔性机器人等领域的应用,在上述基础上,展望了磁敏弹性膜的发展,也提出了面临的问题及挑战。  相似文献   

11.
Conclusions The stability of structural elements within and beyond elasticity limits is one of the important and rapidly developing areas of the mechanics of deformed solid bodies. The results of scientific investigations in this field are adequately covered by numerous monographs [4, 6, 7, 18–20, 52, 57, 59–61, 73, 109] and articles [5, 14, 15, 29, 40, 43, 46, 48, 56, 58, 102, 116, 119, 126] published by Soviet and foreign authors.This article cannot pretend to be comprehensive. In writing it, the author confined himself to a strictly limited framework and aimed to discuss those original results obtained in the last two decades in the field of stability of elastic-plastic elements with the aid of laws of deformation under complex loading conditions which were omitted or incompletely dealt with in the above listed monographs and articles.The author's aim was partly to fill this gap and to attract the reader's attention to the problem under consideration. The author wishes to thank Yu. E. Chernyavskii and V. I. Sorokin for their help in planning this article.Dnepropetrovsk State University. Translated from Prikladnaya Mekhanika, Vol. 15, No. 2, pp. 6–34, February, 1979.  相似文献   

12.
13.
Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Branch of New Physical Problems, Institute of Materials Science, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 27, No. 7, pp. 18–25, July, 1991.  相似文献   

14.
十几年来, 以高速列车为代表的高速铁路装备在长期技术积累和自主研发的基础上,经过引进消化吸收再创新、自主提升创新、全面创新和持续创新,成功研制了多代先进的高速列车产品. 通过不断的技术创新,突破了高速列车系列关键技术, 形成了自主研发能力,不断提升高速列车的安全性、可靠性、经济性、环保性及智能化.我国高速列车的运行速度、综合舒适度、安全性、可靠性、节能环保等各项综合性能指标优良,部分指标达到国际领先水平.论文系统回顾了我国和谐号动车组、复兴号动车组、城际动车组、前沿动车组产品的发展成就及主要技术突破,分析了高速列车研发过程中面临的复杂环境适应性、大系统复杂耦合作用、安全可靠设计、智能化应用等关键技术挑战,系统概述了高速列车故障预测与健康管理技术、车体轻量化技术、被动安全防护技术、碳纤维复合材料应用、气动外形设计技术、高速转向架技术、噪声控制技术、牵引制动技术等关键技术的研究进展及主要技术突破, 并展望了高速列车动力学技术、结构安全技术、被动安全防护技术、流固耦合技术、牵引制动技术、智能控制安全技术、故障预测与健康管理技术、综合节能技术等关键技术的未来发展方向.   相似文献   

15.
舱内液体对VLCC舷侧结构碰撞性能的影响   总被引:1,自引:0,他引:1  
以300kDWT超大型油轮(VLCC)货舱区舷侧结构为研究对象,利用有限元软件MSC.Dytran对 该VLCC在满载和压载工况下的碰撞损伤机理及耐撞性能进行研究,通过对碰撞过程中液货与结构之间的 流-固耦合力、碰撞力、结构变形、结构吸能等进行计算分析,并将这些参数与空载工况下的计算结果进行了对 比分析,阐述舱内液体对结构损伤机理及碰撞性能的影响。研究表明,舱内液货对VLCC舷侧结构碰撞后期 的损伤变形、碰撞力等产生一定影响,对整体碰撞性能影响较小;压载水对结构的损伤机理、耐撞性能均产生 显著影响,结构的变形模式发生明显改变,碰撞力显著增大,系统吸能大幅增加,其耐撞性能显著提高。  相似文献   

16.
为探讨含水率对非饱和黏土动态压缩特性的影响规律,利用分离式霍普金森压杆(SHPB)实验装 置,针对不同含水率非饱和黏土试样开展了侧限条件下的动态压缩实验。实验结果表明,在径向变形受到约 束时,当黏土中含有少量水时,比干黏土更容易压缩;而当含水率进一步增加时,试样在受压过程中逐渐接近 饱和状态,黏土的抗压性能则明显提升。从能量吸收与分配角度来看,随着含水率的增加,试样所吸收的总能 量在逐渐下降,体积改变能所占的比例逐渐增大,而形状改变能所占比例则逐渐减小。  相似文献   

17.
为了研究平面应变条件下各向异性材料中应力波传播的特点,利用各向异性弹性Hooke定律、 Tsai-Hill屈服准则、经典塑性流动理论,引入修正的物态方程计及高压下的体积压缩非线性,建立了平面应 变条件下正交各向异性复合材料的弹塑性本构关系,并且分析了二维问题中材料变形引起的主轴旋转及客 观应力率修正问题。最后采用动态显式有限元方法自行编写程序模拟某种纤维增强复合材料碰撞过程中平 面应力波的传播,模拟结果显示,在平面应变条件下应力波在该材料的传播过程中表现出明显的二维效应、各 向异性特点及弹塑性特点。  相似文献   

18.
Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 24, No. 3, pp. 3–14, March, 1988.  相似文献   

19.
Mathematical models, a finite-element algorithm, and software for computer simulation of coupled electromagentic, thermal, and mechanical processes in water-cooled pulsed solenoids are developed. The thermomechanical state of a high-voltage pulsed solenoid under actual water-cooling conditions is investigated. A. N. Podgornyi Institute of Industrial Engineering Problems, National Academy of Sciences of Ukraine, Kharkov, Ukraine. Translated from Prikladnaya Mekhanika, Vol. 35, No. 4, pp. 101–106, April, 1999.  相似文献   

20.
使用X射线衍射、扫描电子显微镜、X射线能谱、比表面和孔隙度等分析方法,对加载货币银爆轰 实验生成样品的成分含量、粒子形貌、形成物相、金属银的晶粒度、比表面及孔隙度进行了分析。结果表明,银 和铜在爆后的粒子中仍然为共熔体,相对金属银,晶格参数减小,生成银粒子的晶粒度为15.9~22.2nm;由 于高温高压和实验环境的影响,银粒子爆后和其他杂质粒子粘结在一起形成较大的颗粒,含有许多其他成分, 氧化亚铁来源于爆炸罐的罐体,大量无定形碳粉来源于缺氧环境下炸药的不完全燃烧,铝和硅来源于实验装 置。对生成样品的形貌分析证明了XRD对银晶粒度的分析结果。因为样品中含有较多量的碳粉,为了弄清 对气体的吸附作用,对样品进行了比表面、孔隙度以及孔径分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号