首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 448 毫秒
1.
A computational fluid dynamics (CFD) model is used to investigate the hydrodynamics of a gas–solid fluidized bed with two vertical jets. Sand particles with a density of 2660 kg/m3 and a diameter of 5.0 × 10?4 m are employed as the solid phase. Numerical computation is carried out in a 0.57 m × 1.00 m two-dimensional bed using a commercial CFD code, CFX 4.4, together with user-defined Fortran subroutines. The applicability of the CFD model is validated by predicting the bed pressure drop in a bubbling fluidized bed, and the jet detachment time and equivalent bubble diameter in a fluidized bed with a single jet. Subsequently, the model is used to explore the hydrodynamics of two vertical jets in a fluidized bed. The computational results reveal three flow patterns, isolated, merged and transitional jets, depending on the nozzle separation distance and jet gas velocity and influencing significantly the solid circulation pattern. The jet penetration depth is found to increase with increasing jet gas velocity, and can be predicted reasonably well by the correlations of Hong et al. (2003) for isolated jets and of Yang and Keairns (1979) for interacting jets.  相似文献   

2.
Vertical wheel load and tire pressure are both easily managed parameters which play a significant role in tillage operations for limiting slip which involves energy loss. This aspect to a great extent affects the fuel consumption and the time required for soil tillage. The main focus of this experiment was to determine the effect on the wheels’ slip, the fuel consumption and the field performance of a tractor running in a single-wheel 4WD driving system and in a dual-wheel 2WD driving system, due to the variations in air pressure of the tires as well as in the ballast mass. With no additional mass, the lowest fuel consumption was reached by a tractor with the least air pressure in the tires and running in a dual-wheel 2WD driving system. It was determined that for a stubble cultivation with a medium-power (82.3 kW) tractor running in a dual-wheel 2WD driving system, the hourly fuel consumption was by 1.15 L h−1 (or 7.3%), the fuel consumption per hectare by 0.35 L ha−1 (or 7.9%) and the field performance by 0.05 ha h−1 (or 1.25%) lower compared to a single-wheel 4WD driving system, when driving wheels’ slip for both modes was the same, i.e., at 8–12%.  相似文献   

3.
Mars Exploration Rovers (MERs) experienced mobility problems during traverses. Three-dimensional discrete element method (DEM) simulations of MER wheel mobility tests for wheel slips of i = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99 were done to examine high wheel slip mobility to improve the ARTEMIS MER traverse planning tool. Simulations of wheel drawbar pull and sinkage MIT data for i  0.5 were used to determine DEM particle packing density (0.62) and contact friction (0.8) to represent the simulant used in mobility tests. The DEM simulations are in good agreement with MIT data for i = 0.5 and 0.7, with reasonable but less agreement at lower wheel slip. Three mobility stages include low slip (i < 0.3) controlled by soil strength, intermediate slip (i  0.3–0.6) controlled by residual soil strength, and high slip (i > 0.6) controlled by residual soil strength and wheel sinkage depth. Equilibrium sinkage occurred for i < 0.9, but continuously increased for i = 0.99. Improved DEM simulation accuracy of low-slip mobility can be achieved using polyhedral particles, rather than tri-sphere particles, to represent soil. The DEM simulations of MER wheel mobility can improve ARTEMIS accuracy.  相似文献   

4.
Agricultural tractors are machines originally designed to mechanize agricultural tasks, especially tillage and pulling. A large part of research activities have been interested in optimizing tractor efficiency, in particular in terms of emissions and energy. In this frame, the OECD Tractor Code 2 sets out a drawbar test in specific controlled conditions with the aim of evaluating the power of the tractor available at the drawbar. The principal measurement chain relies on dynamometric vehicles (DV) that are instrumented vehicles specifically engineered to develop horizontal force at the drawbar of agricultural tractors. The CREA Laboratory of Treviglio, Italy, engineered a new dynamometric vehicle to test tractors with up to 200 kW at the drawbar (245 kW at the engine flywheel) and a maximum of 118 kN drawbar force. The chosen basis is a FIAT 6605 N truck (TM 69 6 × 6) which has been transformed into a hydrostatic vehicle driven by a hydraulic system and an auxiliary gearbox. The maximum drawbar force was verified up to 122 kN. The drawbar power verification (200 kW) was successfully carried. The final verification confirmed that the project is valid for the investigation and optimization of the parameters regarding the traction efficiency of agricultural tractors.  相似文献   

5.
A method for estimating the three-dimensional (3D) footprint of a 16.9R38 pneumatic tyre was developed. The method was based on measured values of contact pressure at the soil–tyre interface and wheel contact length determined from the contact pressures and the depths and widths of ruts formed in the soil. The 3D footprint was investigated in an area of the field where the pressure sensors of the tyre passed in a soft clay soil. The tyre was instrumented with six miniature pressure sensors, three on the lug face and the remaining three on the under-tread region between two lugs. The instrumented tyre was run at a constant forward speed of 0.27 m/s and 23% slip on a soft soil, 0.48 MPa cone index, 25.6% d.b. moisture content for four wheel load and tyre pressure combination treatments. The 3D footprint assessment derived from soil–tyre interface stress used in this research is a unique methodology, which could precisely relate the trend profile of the 3D footprint to the measured rut depth. The tyre–soil interface contact pressure distributions results showed that as inflation pressure increased the soil strength increased significantly near the centre of the tyre as a compaction increase sensed with the cone penetrometer.  相似文献   

6.
The current paper presents new operational maps for several different multi-microchannel evaporators, with and without any inlet restrictions (micro-orifices), for the two-phase flow of refrigerants R245fa, R236fa, and R1234ze(E). The test fluids flowed in 67 parallel channels, each having a cross-sectional area of 100 × 100 μm2. In order to emulate the power dissipated by active components in a 3D CMOS CPU chip, two aluminium microheaters were sputtered onto the back-side of the test section providing a 0.5 cm2 each. Without any inlet restrictions in the micro-evaporator, significant parallel channel flow instabilities, vapor back flow, and flow maldistribution led to high-amplitude and high-frequency temperature and pressure oscillations. Such undesired phenomena were then prevented by placing restrictions at the inlet of each channel. High-speed flow visualization distinguished eight different operating regimes of the two-phase flow depending on the tested operating conditions. Therefore, the preferred operating regimes can be easily traced. In particular, flashing two-phase flow without back flow appeared to be the best operating regime without any flow and temperature instabilities.  相似文献   

7.
Spatial distribution of soil forces on the surface of plough is an important aspect that can help engineers for improving efficiency of tillage implement. It was analyzed at eleven different points of the moldboard plough with the help of sensors accompanied with the virtual instrument developed in LabView software with the aid of other supporting instruments. It was observed that soil forces increased with an increase in speed and depth. Depth changed soil forces more at upper parts than lower parts whereas speed affected rear parts more than the front part of the plough. Draft forces followed almost similar trend and least value of 308.17 N experimental draft force was found at 1 m/s speed and 5 cm depth under 33% moisture content. Cumulative soil forces found too smaller than the draft as they represented the force spatial distribution of specific parts of plough. It was observed that sensor technology provided real time picture of force variation during tillage process that could save time and effort.  相似文献   

8.
A commercial product of carbon nano-particles, Cabot MONACH 1300 pigment black (CMPB), was studied for basic structural information and electrochemical performance in neutral aqueous electrolytes, aiming at applications in supercapacitors. As confirmed by SEM and HRTEM, the CMPB had a hierarchical structure, containing basic 10 nm nano-spheres which combined into ca. 50 nm agglomerates which further aggregated into larger particles of micrometres. The capacitance of this commercial material was found to increase with decreasing the size of hydrous cation (Li+  Na+  K+), instead of the cation crystal radius (K+  Na+  Li+) when coupled with the same anion (Cl). In electrolytes with the same cation concentration (K+), changing the anion from the larger dianion (SO42−) to the smaller monoanion (Cl) also increased the capacitance at high potential scan rates (>50 mV/s). Increasing electrolyte concentration produced expected effect, including raising the electrode capacitance, but lowering the equivalent series resistance (ESR), charge transfer resistance (CTR), and the diffusion resistance. At higher temperatures, the CMPB exhibited slightly higher capacitance, which does not agree with the Gouy–Chapman theory on electric double layer (EDL). A hypothesis is proposed to account for the capacitance increase with temperature as a result of the CMPB opening up some micro-pores for more ions to access in response to the temperature increase.  相似文献   

9.
Four tire types (A, block-shape tread; B, rib-shape tread; C, low-lug tread; D, high-lug tread) used to harvest and transport sugarcane were compared regarding the compaction induced to the soil. Tires were tested at three inflation pressures (207, 276, 345 kPa) and six loads ranging from 20 to 60 kN/tire. Track impressions were traced, and 576 areas were measured to find equations relating inflation pressure, load, contact surface and pressure. Contact surface increased with increasing load and decreasing inflation pressure; however, the contact pressure presented no defined pattern of variation, with tire types A and B generating lower contact pressure. The vertical stresses under the tires were measured and simulated with sensors and software developed at the Colombian Sugarcane Research Center (Cenicaña). Sensors were placed at 10, 30, 50 and 70 cm depth. Tire types A and B registered vertical stresses below 250 kPa at the surface. These two tires were better options to reduce soil compaction. The equations characterizing the tires were introduced into a program to simulate the vertical stress. Simulated and measured stresses were adjusted in an 87–92% range. Results indicate a good correlation between the tire equations, the vertical stress simulation and the vertical stress measurement.  相似文献   

10.
The present study describes the wall shear stress and the falling liquid film behavior in upward vertical slug flow of air and high viscosity oil. The frictional pressure gradient is directly related to the wall shear stress, and it is usually negative (opposite to the overall flow direction). However, in vertical slug flow, the average total wall shear stress of a slug unit may be negative (in the same direction of the overall flow), resulting in a positive frictional pressure gradient. However, this does not mean, by any way, generation of additional energy or violation of the second law of thermodynamics.The positive frictional pressure gradient phenomenon, reasons and required conditions were explained in this paper. A simplified model was developed and validated against recent experimental data of air-high viscosity oil slug flow in a 50.8 mm ID vertical pipe. The oil viscosity was in the range of 127 mPa s to 580 mPa s. Positive frictional pressure gradient appears when the liquid film wall shear stress supersede the wall shear stress in the slug body. The rate of increase of both wall shear stresses (with respect to the mixture Reynolds number) depend, not only, on the mixture Reynolds number but also, highly, on the liquid viscosity.  相似文献   

11.
In-line flow segregators based on axial induction of swirling flow have important applications in chemical, process and petroleum production industries. In the later, the segregation of gas bubbles and/or water droplets dispersed into viscous oil by swirling pipe flow may be beneficial by either providing a pre-separation mechanism (bubble and/or drop coalescer) or, in the case of water-in-oil dispersions, by causing a water-lubricated flow pattern to establish in the pipe (friction reduction). Works addressing these applications are rare in the literature. In this paper, the features and capabilities of swirling pipe flow axially induced by a vane-type swirl generator were investigated both numerically and experimentally. The numerical analysis has been carried out using a commercial CFD package for axial Reynolds numbers less than 2000. Pressure drop, tangential and axial velocity components as well as swirl intensity along a 5 cm i.d. size and 3 m long pipe were computed. Single phase flow experiments have been performed using a water–glycerin solution of 54 mPa s viscosity and 1210 kg/m3 density as working fluid. The numerical predictions of the pressure drop were compared with the experimental data and agreement could be observed within the range of experimental conditions. The experiments confirmed that swirl flow leads to much higher friction factors compared with theoretical values for non-swirl (i.e. purely axial) flow. Furthermore, the addition of a conical trailing edge reduces vortex breakdown. Visualization of the two-phase swirling flow pattern was achieved by adding different amounts of air to the water–glycerin solution upstream the swirl generator.  相似文献   

12.
Several correlations are available in the open literature for computing the heat transfer coefficient during flow boiling inside plain channels. With respect to halogenated refrigerants, these correlations are usually compared to data taken in a limited range of evaporation temperature and reduced pressure. More recently, the adoption of new refrigerants, such as high pressure HFCs and carbon dioxide, requires to largely extend the pressure range of application of such correlations. Besides, the design of evaporators for some heat pumping applications, where temperatures are set at higher values as compared to usual evaporating temperatures in air-conditioning equipment, requires proper validation of the computing methods.The present paper aims at comparing four well-known predicting models to a new database collected during flow boiling of HCFC (R22) and HFC refrigerants (R134a, R125 and R410A) in a horizontal 8 mm internal diameter tube. This database is characterized by saturation temperature ranging between 25 °C and 45 °C, reduced pressure spanning between 0.19 and 0.53. Mass velocity ranges between 200 and 600 kg m?2 s?1 and heat flux between 9 and 53 kW m?2.Evaporating heat transfer coefficients of halogenated refrigerants at such high temperatures have not been reported in the open literature so far. The discussion of the results will enlighten some similarities with experimental trends presented in the literature for evaporating carbon dioxide.Two models tested here show good prediction capabilities of the present experimental data, but not for all the data sets in the same way. For the purpose of practical use, a simple modification of the correlation by Gungor and Winterton [1] is proposed, showing that this is able to catch the experimental trends of the present database with good agreement.  相似文献   

13.
Extrudate swell is a common phenomenon observed in the polymer extrusion industry. Accurate prediction of the dimensions of an extrudate is important for appropriate design of dies for profile extrusion applications. Prediction of extrudate swell has been challenging due to (i) difficulties associated with accurate representation of the constitutive behavior of polymer melts, and (ii) difficulties associated with the simulation of free surfaces, which requires special techniques in the traditionally used Eulerian framework. In a previous work we had argued that an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation may have advantages in simulating free surface deformations such as in extrudate swell. In the present work we reinforce this argument by comparing our ALE simulations with experimental data on the extrudate swell of commercial grades of linear polyethylene (LLDPE) and branched polyethylene (LDPE). Rheological behavior of the polymers was characterized in shear and uniaxial extensional deformations, and the data was modeled using either the Phan–Thien Tanner (PTT) model or the eXtended Pom–Pom (XPP) model. Additionally, flow birefringence and pressure drop measurements were done using a 10:1 contraction–expansion (CE) slit geometry in a MultiPass Rheometer. Simulated pressure drop and contours of the principal stress difference were compared with experimental data and were found to match well. This provided an independent test for the accuracy of the ALE code and the constitutive equations for simulating a processing-like flow. The polymers were extruded from long (L/D = 30) and short (L/D = 10) capillaries dies at 190 °C. ALE simulations were performed for the same extrusion conditions and the simulated extrudate swell showed good agreement with the experimental data.  相似文献   

14.
Large-eddy simulations of flow past a two-dimensional (2D) block were performed to evaluate four subgrid-scale (SGS) models: (i) the traditional Smagorinsky model, (ii) the Lagrangian dynamic model, (iii) the Lagrangian scale-dependent dynamic model, and (iv) the modulated gradient model. An immersed boundary method was employed to simulate the 2D block boundaries on a uniform Cartesian grid. The sensitivity of the simulation results to grid refinement was investigated by using four different grid resolutions. The velocity streamlines and the vertical profiles of the mean velocities and variances were compared with experimental results. The modulated gradient model shows the best overall agreement with the experimental results among the four SGS models. In particular, the flow recirculation, the reattachment position and the vertical profiles are accurately reproduced with a relative coarse grid resolution of (Nx × Ny × Nz=) 160 × 40 × 160 (nx × nz = 13 × 16 covering the block). Besides the modulated gradient model, the Lagrangian scale-dependent dynamic model is also able to give reasonable prediction of the flow statistics with some discrepancies compared with the experimental results. Relatively poor performance by the Lagrangian dynamic model and the Smagorinsky model is observed, with simulated recirculating patterns that differ from the measured ones. Analysis of the turbulence kinetic energy (TKE) budget in this flow shows evidence of a strong production of TKE in the shear layer that forms as the flow is deflected around the block.  相似文献   

15.
Pipeline slurry flow of mono-dispersed particles through horizontal bend is numerically simulated by implementing Eulerian two-phase model in FLUENT software. A hexagonal shape and Cooper type non-uniform three-dimensional grid is chosen to discretize the entire computational domain, and a control volume finite difference method is used to solve the governing equations. The modeling results are compared with the experimental data collected in 53.0 mm diameter horizontal bend with radius of 148.4 mm for concentration profiles and pressure drops. Experiments are performed on narrow-sized silica sand with mean diameter of 450 μm and for flow velocity up to 3.56 m/s (namely, 1.78, 2.67 and 3.56 m/s) and four efflux concentrations up to 16.28% (namely, 0%, 3.94%, 8.82% and 16.28%) by volume for each velocity. Eulerian model gives fairly accurate predictions for both the pressure drop and concentration profiles at all efflux concentrations and flow velocities.  相似文献   

16.
Surface Evolver software was used to create the three-dimensional geometry of a Kelvin open-cell foam, to simulate that of polyurethane flexible foams. Finite Element Analysis (FEA) with 3D elements was used to model large compressive deformation in the [0 0 1] and [1 1 1] directions, using cyclic boundary conditions when necessary, treating the polyurethane as an elastic or elastic–plastic material. The predicted foam Young’s moduli in the [0 0 1] direction are double those of foams with uniform Plateau border cross-section edges, for the same foam density and material properties. For compression in the [1 1 1] direction, the normalized Young’s modulus increases from 0.9 to 1.1 with foam relative density, and the predicted stress–strain relationship can have a plateau, even for a linearly-elastic polymer. As the foam density increases, the predicted effects of material plasticity become larger. For foam of relative density 0.028, edge-to-edge contact is predicted to occur at a 66% strain for [1 1 1] direction compression. The foam is predicted to contract laterally when the [1 1 1] direction compressive strain exceeds 25%.  相似文献   

17.
The tendency of today’s fuel injection systems to reach injection pressures up to 3000 bar in order to meet forthcoming emission regulations may significantly increase liquid temperatures due to friction heating; this paper identifies numerically the importance of fuel pressurization, phase-change due to cavitation, wall heat transfer and needle valve motion on the fluid heating induced in high pressure Diesel fuel injectors. These parameters affect the nozzle discharge coefficient (Cd), fuel exit temperature, cavitation volume fraction and temperature distribution within the nozzle. Variable fuel properties, being a function of the local pressure and temperature are found necessary in order to simulate accurately the effects of depressurization and heating induced by friction forces. Comparison of CFD predictions against a 0-D thermodynamic model, indicates that although the mean exit temperature increase relative to the initial fuel temperature is proportional to (1  Cd2) at fixed needle positions, it can significantly deviate from this value when the motion of the needle valve, controlling the opening and closing of the injection process, is taken into consideration. Increasing the inlet pressure from 2000 bar, which is the pressure utilized in today’s fuel systems to 3000 bar, results to significantly increased fluid temperatures above the boiling point of the Diesel fuel components and therefore regions of potential heterogeneous fuel boiling are identified.  相似文献   

18.
Indoor airborne bioaerosols of outdoor origin play an important role in determining the exposure of humans to bioaerosols because people spend most of their time indoors. However, there are few studies focusing on indoor bioaerosols originating from outdoors. In this study, indoor versus outdoor size-resolved concentrations and particle asymmetry factors of airborne fluorescent bioaerosols in an office room were measured continuously for 6 days (144 h) using a fluorescent bioaerosol detector. The windows and door of this room were closed to ensure that there was only air infiltration; moreover, any human activities were ceased during sampling to inhibit effects of indoor sources. We focused on fine particles, since few coarse particles enter indoor environments, when windows and doors are closed. Both indoor and outdoor fluorescent bioaerosol size distributions were fit with two-mode lognormal distributions (indoor R2 = 0.935, outdoor R2 = 0.938). Asymmetry factor distributions were also fit with lognormal distributions (indoor R2 = 0.992, outdoor R2 = 0.992). Correlations between indoor and outdoor fluorescent bioaerosol concentrations show significant concentration-attenuation and a time lag during the study period. A two-parameter, semi-empirical model was used to predict concentrations of indoor fluorescent bioaerosols of outdoor origin. The measured and predicted concentrations had a linear relationship for the studied size fractions, with an R2 for all size fractions of larger than 0.83.  相似文献   

19.
This study intended to determine the plant species on a skid road subjected to soil compaction due to timber skidding in a pure sessile oak (Quercus petrea L.) forest. Our previous studies show that ground based skidding destroyed the soil and ecosystem. The timber skidding limits recovery and growth of plant cover on skid roads. However, some herbaceous plant species show healthy habitat, and they can revegetate and survive after the extreme degradation in study area.The composition and cover-abundance scales of these plant species investigated in a 100 m × 3 m transect. Twelve plant species belongs to 10 plant family were determined. Compositae and Liliaceae were the most abundant families. Daphne pontica L., Smilax aspera L., Trachystemon orientalis (L.) G. Don, Carex distachya Desf. var. distachya Desf. have the highest cover-abundance scale among all of determined species on compacted skid road.  相似文献   

20.
This paper reports an experimental investigation of the heat transfer performance of the new low-GWP refrigerants, R1234yf and R1234ze(E), during flow boiling heat transfer inside a horizontal high porosity copper foam with 5 Pores Per Inch (PPI). Metal foams are a class of cellular structured materials consisting of a stochastic distribution of interconnected pores; these materials have been proposed as effective solutions for heat transfer enhancement during both single and two-phase heat transfer. R1234yf and R1234ze(E) refrigerants are appealing alternatives of the more traditional R134a by virtue of their negligible values of GWP and normal boiling temperatures close to that of R134a, which make them suitable solution in several different applications, such as: refrigeration and air conditioning and electronic thermal management. This work compares the two-phase heat transfer behaviour of these new HFO refrigerants, studying the boiling process inside a porous medium and permitting to understand their effective heat transfer capabilities. The experimental measurements were carried out by imposing three different heat fluxes: 50, 75, and 100 kW m−2, at a constant saturation temperature of 30 °C; the refrigerant mass velocity was varied between 50 and 200 kg m−2 s−1, whilst the mean vapour quality varied from 0.2 to 0.95. The two-phase heat transfer and pressure drop performance of the two new HFO refrigerants is compared against that of the more traditional R134a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号