首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
力学   2篇
物理学   10篇
  2017年   1篇
  2016年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有12条查询结果,搜索用时 89 毫秒
1.
The effect of conductor boundaries on the deformation and stability of a charged drop is presented. The motivation for such a study is the occurrence of a charged conductor drop near a conductor wall in experiments (Millikan-like set-up in studies on Rayleigh break-up) and applications (such as electrospraying, ink-jet printing and ion mass spectroscopy). In the present work, analytical (linear stability analysis (LSA)) and numerical methods (boundary element method (BEM)) are used to understand the instability. Two kinds of boundaries are studied: a spherical, conducting, grounded enclosure (similar to a spherical capacitor) and a planar conducting wall. The LSA of a charged drop placed at the center of a spherical cavity shows that the Rayleigh critical charge (corresponding to the most unstable l = 2 Legendre mode) is reduced as the non-dimensional distance ?d = (b - a)/a decreases, where a and b are the radii of the drop and spherical cavity, respectively. The critical charge is independent of the assumptions of constant charge or constant potential conditions. The trans-critical bifurcation diagram, constructed using BEM, shows that the prolate shapes are subcritically unstable over a much wider range of charge as [Formula: see text] decreases. The study is then extended to the stability of a charged conductor drop near a flat conductor wall. Analytical theory for this case is difficult and the stability as well as the bifurcation diagram are constructed using BEM. Moreover, the induced charges in the conductor wall lead to attraction of the drop to the wall, thereby making it difficult to conduct a systematic analysis. The drop is therefore assumed to be held at its position by an external force such as the electric field. The case when the applied field is much smaller than the field due to inherent charge on the drop ((a(3)ρg)/(3ε(0)Ψ(2)) ? 1 is considered. The wall breaks the fore-aft symmetry in the problem, and equilibrium, predominantly prolate shapes corresponding to the legendre mode, l = 2 , are observed. The deformation increases with increasing charge on the drop. The breakup of the prolate equilibrium shapes is independent of the legendre modes of the initial perturbations. The prolate perturbations are subcritically unstable. Since the equilibrium prolate shapes cannot continuously exchange instability with equilibrium oblate shapes, an imperfect transcritical bifurcation is observed. A variety of highly deformed equilibrium oblate shapes are predicted by the BEM calculations.  相似文献   
2.
Accurate prediction of extrudate (die) swell in polymer melt extrusion is important as this helps in appropriate die design for profile extrusion applications. Extrudate swell prediction has shown significant difficulties due to two key reasons. The first is the appropriate representation of the constitutive behavior of the polymer melt. The second is regarding the simulation of the free surface, which requires special techniques in the traditionally used Eulerian framework. In this paper we propose a method for simulation of extrudate swell using an Arbitrary Lagrangian Eulerian (ALE) technique based finite element formulation. The ALE technique provides advantages of both Lagrangian and Eulerian frameworks by allowing the computational mesh to move in an arbitrary manner, independent of the material motion. In the present method, a fractional-step ALE technique is employed in which the Lagrangian phase of material motion and convection arising out of mesh motion are decoupled. In the first step, the relevant flow and constitutive equations are solved in Lagrangian framework. The simpler representation of polymer constitutive equations in a Lagrangian framework avoids the difficulties associated with convective terms thereby resulting in a robust numerical formulation besides allowing for natural evolution of the free surface with the flow. In the second step, mesh is moved in ALE mode and the associated convection of the variables due to relative motion of the mesh is performed using a Godunov type scheme. While the mesh is fixed in space in the die region, the nodal points of the mesh on the extrudate free surface are allowed to move normal to flow direction with special rules to facilitate the simulation of swell. A differential exponential Phan Thien Tanner (PTT) model is used to represent the constitutive behavior of the melt. Using this method we simulate extrudate swell in planar and axisymmetric extrusion with abrupt contraction ahead of the die exit. This geometry allows the extrudate to have significant memory for shorter die lengths and acts as a good test for swell predictions. We demonstrate that our predictions of extrudate swell match well with reported experimental and numerical simulations.  相似文献   
3.
The hydrodynamic interactions between two rotating tori is studied. Two kinds of problems are addressed. The interaction between two force free tori is examined, for co and counter rotating cases, which should be relevant in the case of swimming of two toroidal animals and form the basis for interaction of a swarm of such swimmers, apart from the dynamics of a collection of stiff polymer rings. The second problem is the case of two non-translating rotating tori, a possible configuration in toroidal mixers for microfluidic devices. In the former case, analytical expression for translational velocity shows good agreement with the theory in the far field case and show a strong reduction in the velocities in the lubrication limit for the co-rotating case. The velocities are found to monotonically reduce to zero in the case of counter-rotating tori. For the latter case, the expression for velocity field is derived the net force acting on the torus is analytically calculated. The comparison with numerical results is encouraging both in the case of co as well as counter-rotation. The expressions derived for velocities should be useful in estimating pseudo-potentials between such pairs.  相似文献   
4.
The effect of counterions on the instability of a charged cylinder is investigated. Both axisymmetric and asymmetric perturbations are considered. The analysis shows that the Rayleigh-Plateau instability is modified for a charged cylinder in the presence of counterions. For the axisymmetric instability, the counterions have a stabilizing effect at low values of k \kappa , the inverse Debye layer thickness. However, the effect is destabilizing at higher values of k \kappa . The asymmetric modes which are stable for an uncharged cylinder are rendered unstable at high values of k \kappa . The analysis should be important in pearling instability of charged cylindrical vesicles. The expression for the correlation time of thermally induced shape fluctuations of charged cylindrical vesicles is also derived.  相似文献   
5.
6.
The stability of linear shear flow of a Newtonian fluid past a flexible membrane is analysed in the limit of low Reynolds number as well as in the intermediate Reynolds number regime for two different membrane models. The objective of this paper is to demonstrate the importance of tangential motion in the membrane on the stability characteristics of the shear flow. The first model assumes the wall to be a “spring-backed” plate membrane, and the displacement of the wall is phenomenologically related in a linear manner to the change in the fluid stresses at the wall. In the second model, the membrane is assumed to be a two-dimensional compressible viscoelastic sheet of infinitesimal thickness, in which the constitutive relation for the shear stress contains an elastic part that depends on the local displacement field and a viscous component that depends on the local velocity in the membrane. The stability characteristics of the laminar flow in the limit of low are crucially dependent on the tangential motion in the membrane wall. In both cases, the flow is stable in the low Reynolds number limit in the absence of tangential motion in the membrane. However, the presence of tangential motion in the membrane destabilises the shear flow even in the absence of fluid inertia. In this case, the non-dimensional velocity (Λt) required for unstable fluctuations is proportional to the wavenumber k ( Λ tk) in the plate membrane type of wall while it scales as k2 in the viscoelastic membrane type of wall ( Λ tk 2) in the limit k→ 0. The results of the low Reynolds number analysis are extended numerically to the intermediate Reynolds number regime for the case of a viscoelastic membrane. The numerical results show that for a given set of wall parameters, the flow is unstable only in a finite range of Reynolds number, and it is stable in the limit of large Reynolds number. Received 8 November 2000 and Received in final form 20 March 2001  相似文献   
7.
Chemically induced shape transformations of isotropic seeds, comprised of iron oxyhydroxides and iron oxide borate into nanorods, is reported. Transient growth studies show that the nanorods are formed via phase transformation and aggregation of various metastable species. Addition of tetra-methyl-ammonium hydroxide (TMAH) to the in situ synthesized seeds ensures a typical reaction pathway that favors formation of magnetite (Fe 3 O 4) via the steps of chemical etching, phase transformation of intermediates, and crystal consolidation. Whereas, with addition of sodium hydroxide (NaOH), either magnetite (Fe 3 O 4) or a mixture of (γ-Fe 2 O 3 + α-FeOOH) is obtained. The shape with both the additives is always that of nanorods. When the seeds treated with TMAH were aged in an ultrasonication bath, rods with almost twice the length and diameter (length = 2800 nm, diameter = 345 nm) are obtained as compared to the sample aged without ultrasonication (length = 1535 nm, diameter = 172 nm). The morphology of nanostructures depending upon other experimental conditions such as, aging the sample at 60 °C, seeds synthesized under ultrasonication/ stirring or externally added are also examined and discussed in detail. All the samples show high coercivity and strong ferromagnetic behavior at room temperature and should be promising candidates as ferro-fluids for various applications.  相似文献   
8.
The hydrodynamics of a torus is important on two counts: firstly, most stiff or semiflexible ring polymers, e.g. DNA miniplasmids are modeled as a torus and secondly, it has the simplest geometry which can describe self propelled organisms (particles). In the present work, the hydrodynamics of a torus rotating about its centerline is studied. Analytical expression for the velocity of a force free rotating torus is derived. It is found that a rotating torus translates with a velocity which is proportional to its internal velocity and to the square of the slenderness ratio, epsilon, similar to most low Reynolds number swimmers. The motion of a torus along a cylindrical track is studied numerically and it is observed that a force free torus changes its direction of motion (from a propelled state (weak wall effects) to a rolling state (strong wall effects)) as the diameter of the inner circular cylinder is increased. The rolling velocity is found to depend only on epsilon when the inner cylinder diameter approaches that of the torus.  相似文献   
9.
The stability of oscillatory flows over compliant surfaces is studied analytically and numerically. The types of compliant surfaces studied are the spring backed wall model, which permits tangential motion of the surface, and the incompressible viscoelastic gel model. The stability is determined using the Floquet analysis, where amplitude of perturbations at time intervals separated by one time period is examined to determine whether perturbations grow or decay. The oscillatory flows past both the spring backed wall model and the viscoelastic gel model exhibit an instability in the limit of zero Reynolds number, and the transition amplitude of the oscillatory velocity increases with the frequency of oscillations. The transition amplitude has a minimum at zero wave number for the spring backed plate model, whereas the minimum occurs at finite wavenumber for the viscoelastic gel model. For the spring backed plate model, it is shown that the instability due to steady mean flow and the purely oscillatory instability reinforce each other, and the regions of instability are mapped in the ( ) plane, where is the steady strain rate and A is the oscillatory strain rate. For the viscoelastic gel model, the instability is found to depend strongly on the gel viscosity , and the effect of oscillations on the continuation of viscous modes at intermediate Reynolds number shows a complicated dependence on the oscillation frequency.Received: 17 March 2004, Published online: 30 September 2004PACS: 47.20.Ft Instability of shear flows - 83.50.-v Deformation and flow - 87.19.Tt Rheology of body fluids  相似文献   
10.
Extrudate swell is a common phenomenon observed in the polymer extrusion industry. Accurate prediction of the dimensions of an extrudate is important for appropriate design of dies for profile extrusion applications. Prediction of extrudate swell has been challenging due to (i) difficulties associated with accurate representation of the constitutive behavior of polymer melts, and (ii) difficulties associated with the simulation of free surfaces, which requires special techniques in the traditionally used Eulerian framework. In a previous work we had argued that an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation may have advantages in simulating free surface deformations such as in extrudate swell. In the present work we reinforce this argument by comparing our ALE simulations with experimental data on the extrudate swell of commercial grades of linear polyethylene (LLDPE) and branched polyethylene (LDPE). Rheological behavior of the polymers was characterized in shear and uniaxial extensional deformations, and the data was modeled using either the Phan–Thien Tanner (PTT) model or the eXtended Pom–Pom (XPP) model. Additionally, flow birefringence and pressure drop measurements were done using a 10:1 contraction–expansion (CE) slit geometry in a MultiPass Rheometer. Simulated pressure drop and contours of the principal stress difference were compared with experimental data and were found to match well. This provided an independent test for the accuracy of the ALE code and the constitutive equations for simulating a processing-like flow. The polymers were extruded from long (L/D = 30) and short (L/D = 10) capillaries dies at 190 °C. ALE simulations were performed for the same extrusion conditions and the simulated extrudate swell showed good agreement with the experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号