首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This part presents the numerical results, comparisons and discussion for the exact static solutions of smart beams with piezoelectric (PZT) actuators and sensors including peel stresses presented in Part I. (International Journal of Solids and Structures, 39, 4677–4695) The actuated stress distributions in the adhesive and the adhesive edge stresses varying with the thickness ratios are firstly obtained and presented. The actuated internal stress resultants and displacements in the host beam are then calculated and compared with those predicted by using the shear lag model. The stresses in the adhesive caused by an applied axial force, bending moment and shear force are calculated, and then used to compute the sensing electric charges for comparison with those predicted using the shear lag model. The numerical results are given for the smart beam with (a) one bonded PZT and (b) two symmetrically bonded PZTs, with a comparison to those predicted using the shear lag model. Novel, simple and more accurate formulas for the equivalent force and bending moment induced by applied electric field are also derived for the host beam with one PZT or two symmetrically bonded PZTs. The symmetric shear stress and the anti-symmetric peel stress components caused by a shear force are discussed. In addition, in the case of PZT edge debonding, the stress redistribution in the adhesive and the self-arresting mechanism are also investigated.  相似文献   

2.
This work presents numerical results for the exact dynamic solution of piezoelectric (PZT) smart beams including peel stresses, which was developed in Part I. Numerical results are presented in details for frequency spectra, natural frequencies, normal mode shapes, harmonic responses of the shear and peel stresses, and sensing electric charges for a cantilever beam with a bonded PZT patch to the clamped end. The exact dynamic solution can provide useful data for benchmarking other methods. The numerical results of the present model including peel stresses (PSM) are also compared with those obtained using the shear lag beam model and the shear lag rod model. On the basis of the equivalent forces derived in the static analysis, simple approximate dynamic solutions are obtained and compared with the exact solutions, and then the application and limitation of the simple approximate solutions are investigated. By comparing numerical results predicted by the present PSM model with the shear lag models and the approximate solutions based on the static equivalent forces, effects of the dynamic shear and peel stresses on natural frequencies and dynamic responses of the smart structures are examined.  相似文献   

3.
A new model for a smart beam with a partially debonded active constrained layer damping (ACLD) patch is presented, and the effects of the debonding of the ACLD patch on both passive and hybrid control are investigated. In this model, both shear and compressional vibrations of the viscoelastic material (VEM) layer are considered. The moment inertia and the transverse shear effect are also taken into account based on the Timoshenko’s beam theory. The adhesive layer between the host beam and the piezoelectric sensor patch is modeled as an elastic load transferring media. The debonding of the ACLD patch is approximated by removing the VEM between the constraining layer and the host beam in the debonding region, and the continuity conditions are imposed based on displacement continuity and force balance. A modal velocity observer-based modal control scheme is also given to perform the active modal control of the beam. In order to examine the effects of part debonding of the ACLD patch, the characteristic equation of the beam treated with an ACLD patch is derived. The simulation example results show that an edge debonding of the ACLD patch can significantly affect both passive and hybrid control. It is also found that the additional mode induced by the debonding has unique effects on the modal damping ratios and frequencies of both open-loop and closed-loop system.  相似文献   

4.
This work presents exact dynamic solutions to piezoelectric (PZT) smart beams including peel stresses. The governing equations of partial differential forms are firstly derived for a PZT smart beam made of the identical adherends, and then general solutions of the governing equations are studied. The analytical solutions are applied to a cantilever beam with a partially bonded PZT patch to the fixed end. For the given boundary conditions, exact solutions of the steady state motions are obtained. Based on the exact solutions, frequency spectra, natural frequencies, normal mode shapes, harmonic responses of the shear and peel stresses are discussed for the PZT actuator. The details of the numerical results and sensing electric charges will be presented in Part II of this work. The exact dynamic solutions can be directly applied to a PZT bimorph bender. To compare with the classic shear lag model whose numerical demonstrations will be given in Part II, the related equations are also derived for the shear lag rod model and shear lag beam model.  相似文献   

5.
First order shear deformation theory is applied to analyze the behavior of one-side (unbalanced) and two-side (balanced) patched lap joints containing initial through cracks. The joints are made of adherends bonded together by adhesives. An adhesive interface plate element is introduced; it consists of an adhesive layer weighted by influence of the adherend. The thin adhesive layer is assumed to behave elastically and modelled as a simple tension-shear spring. The mathematical model contains layers of adherend and weighted adhesive layer.Finite elements are employed to model the adherend with an 8-node isoparametric plate element and interface layer with a 16-node plate element. Numerical results are obtained for one-side and two-side patches the width of which could be narrower or wider than the crack length. The former leads to bulging and possible peeling while the latter provides better bonding. Stresses and crack-tip stress intensity factors are calculated for different patch thickness. Effectiveness of the weighted adhesive layer model is exhibited by comparing the present results with those found in previous work where the adhesive is modelled as an individual layer.  相似文献   

6.
为了研究纤维增强聚合物(fiber reinforced polymer, FRP) 加固梁的FRP-混凝土界面脱胶破坏过程,本文将混凝土梁和FRP 板均视为线弹性的欧拉-伯努利梁(Euler-Bernoulli beams), 且两者通过粘结层胶结在一起. 对于FRP-混凝土结构,有两种形式的脱胶破坏:板端脱胶破坏和跨中裂缝导致的脱胶破坏.对于FRP-混凝土梁,利用合理的粘结模型按第2 种脱胶失效形式,详细讨论了FRP-混凝土界面的脱胶过程,得到了不同阶段的胶结滑移、界面剪应力和FRP 轴向力的解析解. 实验研究验证了理论分析的结果,参数研究进一步探讨了胶结长度和粘结层厚度对于FRP-混凝土界面脱胶行为的影响.  相似文献   

7.
The pulsatile flow of blood through a catheterized artery is analyzed, assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a Casson fluid and the peripheral region of plasma as a Newtonian fluid. The resulting non-linear implicit system of partial differential equations is solved using perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The variations of these flow quantities with yield stress, catheter radius ratio, amplitude, pulsatile Reynolds number ratio and peripheral layer thickness are discussed. It is observed that the velocity distribution and flow rate decrease, while, the wall shear, width of the plug flow region and longitudinal impedance increase when the yield stress increases. It is also found that the velocity increases, but, the longitudinal impedance decreases when the thickness of the peripheral layer increases. The wall shear stress decreases non-linearly, while, the longitudinal impedance increases non-linearly when the catheter radius ratio increases. The estimates of the increase in the longitudinal impedance are considerably lower for the present two-fluid model than those of the single-fluid model.  相似文献   

8.
基于所发展的压力相关弹塑性Cosserat连续体模型及相应的数值方法,以一维剪切层及二维平板压缩问题为例,数值分析了Cosserat连续体模型中的本构参数Cosserat剪模、软化模量及内部长度参数对应变局部化数值模拟结果的影响.结果表明在一定取值范围内,Cosserat剪模对数值模拟结果几乎没有影响,并给出了具体数值计算时的取值范围;软化模量绝对值越大,后破坏段的荷载-位移曲线越陡,计算得到的剪切带宽度越窄;内部长度参数越大,后破坏段的荷载-位移曲线越平缓,计算得到的剪切带越宽.  相似文献   

9.
在铆钉力法的基础上,提出计算胶接修补加筋板结构应力强度因子及胶层剪应力的解析法,对分析胶接修补的加筋板强度具有现实意义.利用影响系数,可以得到筋条、补片及蒙皮位移的表达式,根据位移协调条件,建立联立方程,从而得到胶层剪应力及铆钉力.通过解析式,计算裂纹尖端的应力强度因子,分析补片对结构修补的效果,综合考虑了筋条及补片对应力强度因子的影响.  相似文献   

10.
CFRP阶梯加固可以有效减小CFRP端部胶层应力,防止胶层过早剥离而导致CFRP加固失效.文中通过理论推导建立CFRP阶梯加固钢板的端部胶层剪应力和正应力的理论模型,并采用有限元模型验证了理论模型,然后利用理论模型研究了加固参数对胶层应力的影响.研究结果表明:理论模型可以有效地计算端部胶层应力,且当阶梯端部长度超过“最小端部长度”时,理论模型可以准确计算端部胶层的最大应力值及其发生位置;利用理论模型便于分析各种参数对端部胶层应力的影响,其中胶层厚度、阶梯数量和CFRP厚度对端部胶层应力影响较大.  相似文献   

11.
A cohesive interface modeling approach to debonding analysis of adhesively bonded interface between two balanced adjacent flexural cracks in conventional material (e.g., concrete or wood) beams strengthened with externally bonded FRP plates is presented. Both the strengthened beam and strengthening FRP are modeled as two linearly elastic Euler–Bernoulli beams bonded together through a thin adhesive layer. A bi-linear cohesive model, which is commonly used in the literature, is adopted to characterize the stress-deformation relationship of the FRP–concrete interface. Completely different from the single-lap or double-shear pull models in which only the axial pull force is considered, the present model takes the couple moment and transverse shear forces in both the substrates into account to study the second type of intermediate crack-induced debonding (IC debonding) along the interface. The whole debonding process of the FRP–concrete interface is discussed in detail, and closed-form solutions of bond slip, interface shear stress, and axial force of FRP in different stages are obtained. A rotational spring model is introduced at locations of the two adjacent flexural cracks to model the local flexibility of the cracked concrete beam, with which the relationship between the local bond slip and externally applied load is established and the real bond failure process of the FRP-plated concrete beam with the increasing of the externally applied load is revealed. Parametric studies are further conducted to investigate the effect of the thickness of adhesive layer on the bond behavior of FRP–concrete interface. The present closed-form solution and analysis on the local bond slip versus applied load relationship for the second type of IC debonding along the interface shed light on the bond failure process of structures externally strengthened with FRP composite plates and can be used effectively and efficiently to predict ductility and ultimate load of FRP-strengthened structures.  相似文献   

12.
This paper aims at developing a stochastic-elastic model of a soft elastic body adhering on a wavy surface via a patch of molecular bonds. The elastic deformation of the system is modeled by using continuum contact mechanics, while the stochastic behavior of adhesive bonds is modeled by using Bell's type of exponential bond association/dissociation rates. It is found that for sufficiently small adhesion patch size or stress concentration index, the adhesion strength is insensitive to the wavelength but decreases with the amplitude of surface undulation, and that for large adhesion patch size or stress concentration index, there exist optimal values of the surface wavelength and amplitude for maximum adhesion strength.  相似文献   

13.
FRP-混凝土界面粘结行为的参数影响研究   总被引:3,自引:0,他引:3  
彭晖  高勇  谢超  崔潮  张克波 《实验力学》2014,29(4):489-498
FRP-混凝土界面的粘结性能对FRP加固混凝土结构力学行为和破坏模式有着重要影响。本文对表征FRP-混凝土界面粘结性能的三个重要参数(界面初始刚度、最大剪应力、界面破坏能)开展研究,通过13个单剪试件的试验考察了混凝土强度、胶层厚度和粘结长度等因素对界面粘结行为的影响,根据试验结果拟合了界面破坏能、最大剪切应力与胶层剪切刚度、混凝土强度之间的函数关系。在试验研究基础上,构建了外贴FRP-混凝土界面粘结的有限元模型。通过有限元分析考察了界面破坏能等三个参数不变的前提下,不同的局部粘结滑移本构关系对界面粘结行为的影响;进而研究了其中一个参数变化时引起的界面粘结性能改变。研究结果表明:界面粘结承载力随着胶层厚度增加而逐渐提高;胶层厚度与界面破坏能成正比,与峰值剪应力成反比;当界面破坏能等三个参数保持不变时,局部粘结滑移本构关系对FRP-混凝土界面粘结性能的影响较小;三个参数中的一个增大时将延缓界面破坏的过程。  相似文献   

14.
The current study presents finite element simulations of shear localization along the interface between cohesionless granular soil and bounding structure under large shearing movement. Micro-polar (Cosserat) continuum approach is applied in the framework of elasto-plasticity in order to overcome the numerical problems of localization modeling seen in the conventional continuum mechanics. The effects of different micro-polar kinematic boundary conditions, along the interface, on the evolution and location of shear band are shown by the numerical results. Furthermore, shear band thickness is also investigated for its dependence on the initial void ratio, vertical pressure and mean grain size. Here, the distribution and evolution of static and kinematic quantities are the main focuses regarding infinite layer of micro-polar material during plane shearing, especially with advanced large movement of bounding structure. The influence of such movement has not been investigated yet in the literature. Based on the results obtained from this study, shear localization appears parallel to the direction of shearing. It occurs either in the middle of granular layer or near boundaries, regarding the assumed micro-polar kinematic boundary conditions at the bottom and top surfaces of granular soil layer. Narrower shear band is observed in lower rotation resistance of soil particles along the interface. It is emphasized that the displacement magnitude of bounding structure has significant effect on the distribution and evolution of state variables and polar quantities in the granular soil layer. However, continuous displacement has no meaningful effect on the thickness of shear band. Here, smooth distributions of void ratio and shear stress components are obtained within the shear band, what the other previous numerical investigations did not receive. Despite indirect linking of Lade’s model to the critical state soil mechanics, state variables tend towards asymptotical stationary condition in large shear deformation.  相似文献   

15.
16.
17.
S. Bhalla  R. Panigrahi  A. Gupta 《Meccanica》2013,48(6):1465-1478
This paper presents the application of surface-bonded piezo-transducers for damage assessment of tensegrity structures through dynamic strain measurement and electro-mechanical impedance (EMI) technique. The two techniques are first applied on a single module tensegrity structure, 1 m×1 m in size and their damage diagnosis results compared. A single piezoelectric-ceramic (PZT) patch bonded on a strut measures the dynamic strain during an impact excitation of the structure. Damage is identified from the changes in global frequencies of the structure obtained from the PZT patch’s response. This is compared with the damage identified using the EMI technique, which is a signature based technique and operates at frequencies of the order of kHz. The dynamic strain approach, which requires commonly available hardware, is found to exhibit satisfactory performance vis-à-vis the EMI technique for damage assessment of tensegrity structures. The damage diagnosis exercise is then extended to a tensegrity grid structure, 2 m×2 m size, fabricated using galvanized iron (GI) pipes and mild steel wire ropes. The damage is localized using changes in natural frequencies observed experimentally using the dynamic strain approach and the corresponding mode shapes of the undamaged structure derived numerically. The dynamic strain approach is found to be very expedient, displays competitive performance and is at the same time cost effective for damage assessment of tensegrity structures.  相似文献   

18.
Externally bonding of fiber reinforced polymer (FRP) plates or sheets has become a popular method for strengthening reinforced concrete structures. Stresses along the FRP–concrete interface are of great importance to the effectiveness of this type of strengthening because high stress concentration along the FRP–concrete interface can lead to the FRP debonding from the concrete beam. In this study, we develop an analytical solution of interface stresses in a curved structural beam bonded with a thin plate. A novel three-parameter elastic foundation model is used to describe the behavior of the adhesive layer. This adhesive layer model is an extension of the two-parameter elastic foundation commonly used in existing studies. It assumes that the shear stress in the adhesive layer is constant through the thickness, and the interface normal stresses along two concrete/adhesive and adhesive/FRP interfaces are different. Closed-form solutions are obtained for these two interfacial normal stresses, shear stress within the adhesive layer, and beam forces. The validation of these solutions is confirmed by finite element analysis.  相似文献   

19.
The time-dependent flexural cracking behaviour of reinforced concrete beams strengthened with externally bonded composite materials is investigated with a focus on the creep effects. A theoretical model is developed, which accounts for the creep of the different materials involved, and which also accounts for the time-dependent cracking and the tension-stiffening phenomenon. The deformability of the adhesive layer in shear and through its thickness, as well as its ability to transfer shear and vertical normal stresses, is considered in the model. The incremental governing equations are formulated via the variational principle of virtual work based on an incremental exponential algorithm for the creep modelling. The capabilities of the model are demonstrated through numerical examples including a comparison with test results available in the literature. The results show that creep causes a significant redistribution of the internal forces and the interfacial stresses at the adhesive interfaces with time, which should be carefully considered in the design of FRP strengthened members.  相似文献   

20.
This paper presents a feasibility study for practical applications of an impedance-based real-time health monitoring technique applying PZT (Lead–Zirconate–Titanate) patches to concrete structures. First, comparison between experimental and analytical studies for damage detection on a plain concrete beam is made. In the experimental study, progressive surface damage inflicted artificially on the plain concrete beam is assessed by using both lateral and thickness modes of the PZT patches. Then, an analytical study based on finite element (FE) models is carried out to verify the validity of the experimental result. Secondly, multiple (shear and flexural) cracks incurred in a reinforced concrete (RC) beam under a third point bending test are monitored continuously by using a sensor array system composed of the PZT patches. In this study, a root mean square deviation (RMSD) in the impedance signatures of the PZT patches is used as a damage indicator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号