首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents numerical results for the exact dynamic solution of piezoelectric (PZT) smart beams including peel stresses, which was developed in Part I. Numerical results are presented in details for frequency spectra, natural frequencies, normal mode shapes, harmonic responses of the shear and peel stresses, and sensing electric charges for a cantilever beam with a bonded PZT patch to the clamped end. The exact dynamic solution can provide useful data for benchmarking other methods. The numerical results of the present model including peel stresses (PSM) are also compared with those obtained using the shear lag beam model and the shear lag rod model. On the basis of the equivalent forces derived in the static analysis, simple approximate dynamic solutions are obtained and compared with the exact solutions, and then the application and limitation of the simple approximate solutions are investigated. By comparing numerical results predicted by the present PSM model with the shear lag models and the approximate solutions based on the static equivalent forces, effects of the dynamic shear and peel stresses on natural frequencies and dynamic responses of the smart structures are examined.  相似文献   

2.
This work presents exact dynamic solutions to piezoelectric (PZT) smart beams including peel stresses. The governing equations of partial differential forms are firstly derived for a PZT smart beam made of the identical adherends, and then general solutions of the governing equations are studied. The analytical solutions are applied to a cantilever beam with a partially bonded PZT patch to the fixed end. For the given boundary conditions, exact solutions of the steady state motions are obtained. Based on the exact solutions, frequency spectra, natural frequencies, normal mode shapes, harmonic responses of the shear and peel stresses are discussed for the PZT actuator. The details of the numerical results and sensing electric charges will be presented in Part II of this work. The exact dynamic solutions can be directly applied to a PZT bimorph bender. To compare with the classic shear lag model whose numerical demonstrations will be given in Part II, the related equations are also derived for the shear lag rod model and shear lag beam model.  相似文献   

3.
This paper presents a novel formulation and analytical solutions for adhesively bonded composite single lap joints by taking into account the transverse shear deformation and large deflection in adherends. On the basis of geometrically nonlinear analysis for infinitesimal elements of adherends and adhesive, the equilibrium equations of adherends are formulated. By using the Timoshenko beam theory, the governing differential equations are expressed in terms of the adherend displacements and then analytically solved for the force boundary conditions prescribed at both overlap ends. The obtained solutions are applied to single lap joints, whose adherends can be isotropic adherends or composite laminates with symmetrical lay-ups. A new formula for adhesive peel stress is obtained, and it can accurately predict peel stress in the bondline. The closed-form analytical solutions are then simplified for the purpose of practical applications, and a new simple expression for the edge moment factor is developed. The numerical results predicted by the present full and simplified solutions are compared with those calculated by geometrically nonlinear finite element analysis using MSC/NASTRAN. The agreement noted validates the present novel formulation and solutions for adhesively bonded composite joints. The simplified shear and peel stresses at the overlap ends are used to derive energy release rates. The present predictions for the failure load of single lap joints are compared with those available in the literature.  相似文献   

4.
In order to improve the joint failure strength, an adhesively bonded smart composite pipe joint system has been developed by integrating electromechanical coupling piezoelectric layers with the connection coupler. It has been validated that the integrated piezoelectric ceramic layers can smartly reduce stress concentration in the adhesive layer bond-line under bending or axial tension loads. In this study, piezoelectric particle/fiber reinforced polymer composite was utilized to construct adhesively bonded smart composite pipe joint systems, in order to overcome the brittle characteristic of the piezoelectric ceramic layers and to facilitate joint construction. Since torsion is one of the dominating loading conditions in practice, the behavior of the newly developed smart pipe joint system subjected to torsion loading was investigated in-detail to evaluate the effect of the integrated piezoelectric reinforced polymer composite layer on the joint performance. Firstly, based on the first-order shear deformation theory, the fundamental equations with relevant boundary and continuity conditions were developed to theoretically model the smart pipe joint system subjected to torsion loading. Further, the analytical solutions for the mid-plane displacements and the shear and peel stresses in the adhesive layer were obtained by using the Levy solution and the state-space method. Finally, some numerical examples were presented to evaluate the detailed effect of the stacking sequence and thickness of the integrated composite piezoelectric layers in the connection coupler on reducing the stress concentration in the adhesive layer; the effect of the applied electric fields on shear and peel stresses in the adhesive layer was also illustrated.  相似文献   

5.
Incorporating with the high electro-mechanical coupling performance of piezoelectric materials, design and analysis of an adhesively bonded smart composite pipe joint system were conducted. In this joint system, piezoelectric layers were integrated into the joint coupler in order to reduce stress concentration in the joint adhesive layer. To theoretically verify the composite action and efficiency of the integrated piezoelectric layers, an electro-mechanical model based on the first-order shear deformation theory was established. This model was able to clarify the energetic characteristics of the proposed joint system on the improvement in the joint strength, which was under the action of a bending moment at the joint ends. The state-space method was utilized to obtain the final analytical solutions, including the peel and shear stress distributions in the adhesive layer. Finally, some numerical examples were calculated to evaluate the effect of the detailed stacking sequence and size of the integrated piezoelectric layers on reducing the stress concentration in the adhesive layer as well as the applied electric fields. These numerical results validated the integrity of the developed adhesively bonded smart composite pipe joint system.  相似文献   

6.
This paper presents novel closed-form and accurate solutions for the edge moment factor and adhesive stresses for single lap adhesive bonded joints. In the present analysis of single lap joints, both large deflections of adherends and adhesive shear and peel strains are taken into account in the formulation of two sets of nonlinear governing equations for both longitudinal and transverse deflections of adherends. Closed-form solutions for the edge moment factor and the adhesive stresses are obtained by solving the two sets of fully-coupled nonlinear governing equations. Simplified and accurate formula for the edge moment factor is also derived via an approximation process. A comprehensive numerical validation was conducted by comparing the present solutions and those developed by Goland and Reissner, Hart-Smith and Oplinger with the results of nonlinear finite element analyses. Numerical results demonstrate that the present solutions for the edge moment factor (including the simplified formula) and the adhesive stresses appear to be the best as they agree extremely well with the finite element analysis results for all ranges of material and geometrical parameters.  相似文献   

7.
To actively reduce the stress concentration effect in adhesive layers, a novel smart adhesively bonded composite pipe joint system was developed by integrating piezoelectric layers as sensor/actuator in the connection coupler. In the presently developed smart pipe joint system, the mechanical loading induced structural deformation can be detected and monitored by integrated sensing piezoelectric layers, and then the signal is fed back to the integrated actuating piezoelectric layers to adaptively produce additional forces and moments so as to decrease the maximum peel and shear stresses in the adhesive layer. In order to theoretically predict the efficiency of the developed smart pipe joint system, an electro-mechanical theoretical analytical model was established to investigate the characteristics of the joint system under end tension load in terms of first-order shear deformation theory. Simultaneously, the state-space method was utilized to deduce the final analytical solutions, including the peel and shear stress distributions in the adhesive layer. Finally, some detailed numerical results were obtained to demonstrate the optimal design method of such smart pipe joint system and further validate the integrity of this joint system.  相似文献   

8.
碳纤维布加固混凝土梁的解析分析   总被引:4,自引:1,他引:4  
张鹏 《力学与实践》2004,26(1):32-33
根据弹性理论和部分组合截面假定,分析碳纤维布加固混凝土梁体系,建立单位长度粘结界面剪力表达式和碳纤维布轴向拉力微分方程,从而推导出碳纤维布拉力、混凝土梁正截面弯矩和粘结界面剪应力解析解的一般形式,满足实际应用.结合算例指出:碳纤维布轴向拉力和粘结界面剪应力分布不均匀,在端部区段应力集中,可能导致加固失效,应采取措施加强锚固.  相似文献   

9.
以薄壁箱梁的弯曲计算理论为基础,从分析翼缘板的面内剪切变形和弯曲剪力流的分布规律入手,从理论上证明二次抛物线是箱形梁剪力滞效应分析中的合理翘曲位移函数。选取剪力滞效应引起的附加挠度作为广义位移,用基于最小势能原理的能量变分法建立箱形梁剪力滞效应分析的控制微分方程和边界条件。对箱梁横截面上新出现的广义内力给出严密定义,并建立了剪力滞翘曲应力的简便计算公式,它与初等梁弯曲应力公式具有相同的形式。对一个简支箱梁模型的计算表明,计算值与实测值吻合良好,从而证实了本文的分析方法和建立的公式是正确的。不同于弯矩的分布,剪力滞广义力矩具有快速衰减的分布特征。对集中荷载作用下的简支箱梁算例,剪力滞效应使其跨中挠度增大达12%,工程实践中必须认真对待。  相似文献   

10.
金丽华  霍永忠 《力学季刊》2007,28(1):111-115
光敏液晶高弹体是一类新型智能材料,它兼有液晶和橡胶的特性,可以同时由光、热实现驱动,具有广阔的应用前景.本文着重研究了光敏液晶高弹体梁的光致弯曲特性,根据该材料的一维线性化本构关系,在小变形假设下,用简单梁理论得到了光致弯曲模型.将光照的效应等价为一等效力矩,分析了各种参数对其的影响规律,得到了自由梁弯曲曲率和超静定梁约束反力的解析表达式,并计算了梁内应力分布及中性面的个数.结果表明,各种参量对弯曲的影响相互耦合,显现出非线性性;液晶高弹体光致弯曲存在两个或三个中性面,应力分布与通常的梁弯曲有很大不同.  相似文献   

11.
This work presents an adhesive model for stress analysis of bonded lap joints, which can be applied to model thin and thick adhesive layers. In this theory, linear variations of displacement components along the adhesive thickness are firstly assumed, and the longitudinal strain and the Poisson's effect of the adhesive are modeled. A differential form of the equilibrium equations for the adherends is analytically solved by means of compatible relations of the adhesive deformation. The derived shear and peel stresses are compared with the classical adhesive model of continuous springs with constant shear and peel stresses, and validated with two-dimensional finite element results of the geometrically nonlinear analysis using a commercial package. The numerical results show that the present linear displacement theory can be applied to both thin and moderately thick adhesive layers. The present formulation of the linear displacement theory is then extended to the higher order displacement theory for stress analysis of a thick adhesive, whose numerical results are also compared with those of the finite element computation.  相似文献   

12.
阶梯压电层合梁的波动动力学特性   总被引:2,自引:0,他引:2  
任建亭  姜节胜 《力学学报》2004,36(5):540-548
采用行波理论系统地研究了压电阶梯梁的自由振动分析以及强迫响应的分析方法. 基于分布 参数理论研究了压电阶梯梁的波传播特性,忽略柔性梁横向剪切和转动惯量的影响,给出了 梁的轴向和横向的简谐波解. 将压电阶梯梁离散化为单元,考虑压电片的刚度和质量的影响, 建立了节点散射模型. 应用位移连续和力平衡条件,推导了节点的波反射和波传递矩阵,在 此基础上,引入波循环矩阵的概念,给出波循环矩阵、波传递系数矩阵的确定方法. 应用波 循环矩阵可以有效地计算结构的固有频率. 另外,应用波传递系数研究了压电陶瓷作动器位 置对其驱动能力的影响. 得出两个主要结论:1)作动器靠近悬臂梁固定端将有较强的驱动 能力,悬臂梁边界反射行波产生弯曲消失波有利于增大压电波的模态传递系数;2)模态传 递系数与固有频率的灵敏度密切相关,波传递系数越大, 对应该处固有频率变化灵敏度越大. 另外,数值算例表明了行波方法比有限元方法具有更高的计算精度.  相似文献   

13.
An unbalanced repair is a composite patch bonded to one side of a cracked structure for the purpose of preventing or reducing damage growth in the substrate. A single-sided repair offsets the load path within the structure, inducing out-of-plane bending. This bending increases the stress intensity in the underlying crack and causes adhesive peel stresses and bending of the repair which can, relative to a repair that is restrained against bending, lead to early failure. In this article the authors correct the analysis of Wang and Rose [Wang, C.H., Rose, L.R.F., 1997. On the design of bonded patches for one-sided repair. In: Proceedings of the 11th International Conference on Composite materials, Gold Coast, Australia, vol. 5, pp. 347–356] developed by using an energy analysis of a single-sided or unbalanced repair applied to a very long-crack, to comply with Maxwell’s reciprocal theorem and to account for transverse normal and shear stresses at the crack tip and the accompanying shear deflections. The authors then develop closed-form equations useful for bonded composite repair design and damage tolerance assessment of cracks of arbitrary length by developing a new method for interpolation between this long-crack limit and a short-crack limit based on the stress intensity and crack face displacements for an unreinforced crack. The interpolation method is then tested against an advanced line-spring model that has been created by using a 6th order generalized plane strain plate formulation in extension and a new 8th order formulation in bending, thus allowing for the inclusion of transverse shear and normal stresses. The closed-form equations are found to be accurate when compared to the line-spring model, and to provide reasonable results when compared to a three-dimensional finite element model of a bonded repair. Inaccuracies are shown to exist principally in the determination of the nominal stresses in the vicinity of the crack.  相似文献   

14.
Externally bonding of fiber reinforced polymer (FRP) plates or sheets has become a popular method for strengthening reinforced concrete structures. Stresses along the FRP–concrete interface are of great importance to the effectiveness of this type of strengthening because high stress concentration along the FRP–concrete interface can lead to the FRP debonding from the concrete beam. In this study, we develop an analytical solution of interface stresses in a curved structural beam bonded with a thin plate. A novel three-parameter elastic foundation model is used to describe the behavior of the adhesive layer. This adhesive layer model is an extension of the two-parameter elastic foundation commonly used in existing studies. It assumes that the shear stress in the adhesive layer is constant through the thickness, and the interface normal stresses along two concrete/adhesive and adhesive/FRP interfaces are different. Closed-form solutions are obtained for these two interfacial normal stresses, shear stress within the adhesive layer, and beam forces. The validation of these solutions is confirmed by finite element analysis.  相似文献   

15.
ABSTRACT

A study is undertaken on dynamic response of a simply supported rigid perfectly plastic beam that is subjected to partly distributed blast-type pressure loading. The beam material has finite shear strength and obeys a square yield criterion relating bending moment and transverse shear force. The transverse dynamic load is uniformly and symmetrically distributed over a middle portion of the span. Various patterns of deformation, which combine plastic bending and shear sliding, are obtained for a wide range of parameters, and the effects of transverse shear forces and time dependence of the dynamic pressure are examined.  相似文献   

16.
In the electro-mechanical impedance (EMI) technique, which is based on induced strain actuation through piezoelectric ceramic (PZT) patch, the knowledge of shear stress distribution in the adhesive bond layer between the patch and the host structure is very pertinent for reliable health monitoring of structures. The analytical derivation of continuum based shear lag model covered in this paper aims to provide an improved and more accurate model for shear force interaction between the host structure and the PZT patch (assumed square for simplicity) through the adhesive bond layer, taking care of all the piezo, structural and adhesive effects rigorously and simultaneously. Further, it eliminates the hassle of determining the equivalent impedance of the structure and the actuator separately, as required in the previous models, which was approximate in nature. The results are compared with the previous models to highlight the higher accuracy of the new approach. Based on the new model, a continuum based interaction term has been derived for quantification of the shear lag and inertia effects.  相似文献   

17.
This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded composite lap joints with tapered and/or non tapered adherend edges under uniaxial tension. The solution method provides the transverse shear and normal stresses in the adhesives and in-plane stress resultants and bending moments in the adherends. The method utilizes the principle of virtual work in conjunction with von Karman’s nonlinear plate theory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layers between the adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintaining a linear stress–strain relationship in the adherends. In order to account for the stiffness changes due to thickness variation of the adherends along the tapered edges, the in-plane and bending stiffness matrices of the adherents are varied as a function of thickness along the tapered region. The combination of these complexities results in a system of nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite element method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhesive material on the stress fields in the adherends, as well as the adhesives of a single- and double-lap joint.  相似文献   

18.
Although peel stresses are believed to be responsible for failure in many adhesive joint geometries, the measurement of these peel stresses has been elusive. In this work, embedded poly(vinylidene fluoride) piezoelectric sensors were used to measure peel stresses in adhesively bonded joints. Piezoelectric KYNAR® film was etched to produce multi-area stress sensors which were bonded into adhesive joints. Calibration results and results for single-lap and elastomeric butt joints are presented. The elastomeric butt joint was compared to an analytical solution for the bond-normal stresses, and the single-lap joint results were compared to finite-element analysis. Promising features and liminations of this technique are discussed.  相似文献   

19.
In this study, the static and dynamic response of a system composed of an Euler-Bernoulli beam with axially restrained ends and a pair of piezo patches symmetrically bonded at a specified localization is investigated. The system is kinematically loaded as a result of the prescribed displacement of one or both supports. By applying an electric field to the piezo patches a residual in-plane stress is generated in the system. The residual force, depending on the direction of the electric field vector, may diminish or enhance the system buckling capacity as well as affecting its natural vibration frequency. In order to acquire approximate solutions to the non-linear dynamic equilibrium equation, a version of the Lindstedt-Poincare method is utilized. With this in mind, the transversal displacements, vibration frequency and axial dynamic force are expanded into exponential series with respect to the small amplitude parameter. The numerical results show the effect of the structural parameters and induced axial piezoelectric force on the stability of the system and its vibration frequency. The amplitude-frequency relationship of the actuated system is also investigated.  相似文献   

20.
端部受斜冲击的刚塑性悬臂梁的双铰模型   总被引:2,自引:0,他引:2  
斜冲击载荷作用在刚塑性悬臂梁的端部,引起作用在梁横截面处的弯矩以及轴力;在发生塑性变形截面处,弯矩及轴力满足交互作用屈服条件。广义应力在移行铰的邻域不违背屈服条件,屈服函数可在移行铰的背面取极大值,移行铰处的剪切力不必为零。如果悬臂梁足够长,在响应的初始阶段移行铰处非零的剪力会在梁上引起多铰变形。通过对双铰模型与单铰模型的比较发现,双铰模型计算的结果与单铰模型计算的结果很接近,单铰模型作为一个近似模型具有一定的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号