首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
聚能炸药逆向环形起爆形成高速射流研究   总被引:7,自引:1,他引:6  
设计了一种长径比为 0 .375 ,罩锥角为 12 0的大锥角小长径比聚能装药。利用闪光X射线摄影技术观察了小长径比聚能装药正向起爆时形成的射流图象以及逆向起爆时药型罩的压垮图象和射流图象。给出了形成射流的头部速度、射流的质量分布等射流特性参数。试验的聚能装药逆向起爆时射流头部速度为 7.48km/s,而正向起爆时仅为 4.34km/s。试验研究表明通过逆向环形起爆 ,小长径比聚能装药获得高速射流是可行的。  相似文献   

2.
采用ALE方法对射孔弹射流形成的过程及聚能射流对混凝土靶板的侵彻进行了数值模拟,对比了锥形药型罩的不同锥角对聚能射流形成和侵彻的影响.研究结果表明药型罩的锥角大小对聚能射流的速度和形状、射流头部和杵体的质量、侵彻的宽度和深度有着明显显著的影响.小锥角射流头部比重较小且杵体速度未达到侵彻临界值而无法起到很好的侵彻效果,大...  相似文献   

3.
基于60mm 弧锥结合罩EFP装药,设计了一种在药型罩前适当位置安装可抛掷的十字形网栅的 切割式多爆炸成形弹丸战斗部结构,并进行了靶场静爆实验。由实验结果可知,该战斗部经网栅切割后能形 成5枚具有一定质量和方向性、可贯穿6mm 厚45钢靶的弹丸,有效提高了毁伤元的数量和毁伤面积。利用 LS-DYNA程序对弹丸侵彻45钢靶过程进行了数值模拟,分析了弹丸侵彻钢靶过程。通过对中心弹丸穿靶 模拟数据的处理,得到了其余尺寸弹丸侵彻不同厚度45钢靶的极限穿透速度计算公式,该公式可对相关切割 式多爆炸成形弹丸战斗部威力优化设计和评估提供依据。  相似文献   

4.
Φ100/30mm口径二级轻气炮主要用于EFP(Explosively Formed Projectile爆炸成形弹丸)、PELE(Penetrator with Enhanced Lateral Efficiency横向效应增强型侵彻弹)、分段杆条等杀伤元件对各类目标毁伤机理及高应变率材料动态性能等领域的高速、超高速撞击实验研究。该气炮以Φ100mm单级压缩气炮作为首级驱动,加装可拆卸的Φ30mm发射管,实现了一、二级气炮的功能。本文主要介绍了该气炮的高压锥段、发射管、膜片及活塞等关键零部件的结构设计、调试及实验研究情况。目前该炮作为一级气炮已将20kg弹丸驱动到349m/s,1kg弹丸驱动到1157m/s;作为二级气炮已将100g弹丸驱动到3005m/s,400g弹丸驱动到1520m/s。  相似文献   

5.
为研究药型罩对聚能射孔弹侵彻页岩储层的射孔和损伤致裂效果的影响机理,建立了射孔弹-空气-页岩三维模型,设置药型罩的锥角分别为50°、60°、70°和80°,壁厚分别为0.5、1.0和1.5 mm,材料分别为铜、钢、钛和钨。利用ANSYS/LS-DYNA软件进行数值计算,分别从射流速度与形态、页岩射孔效果及页岩孔裂隙形成规律特征等进行系统性分析。研究结果表明:在射孔弹结构中,随着药型罩锥角的减小,射流速度提高、杵体速度降低、侵彻深度增大同时开孔孔径减小。在一定范围内,适当减小药型罩的壁厚,可以提高射流速度、减小杵体质量、增大侵彻深度和开孔倾斜度。药型罩材料对射流速度、杵体结构和页岩射孔效果均有显著影响,其中钨药型罩射孔弹的侵彻深度最大但开孔孔径最小,钛药型罩射孔弹的侵彻深度最小但开孔倾斜度最大,铜比钢药型罩射孔弹的侵彻深度略大但开孔孔径略小。通过研究不同对照组的页岩孔裂隙形成规律特征发现,页岩孔裂隙发育主要发生在杵体对页岩的再扩孔阶段,减小射流初始扩孔孔径、增大杵体直径、提高杵体速度,可以促进页岩孔裂隙发育程度。  相似文献   

6.
爆轰波波形与药型罩结构匹配对杆式射流成形的影响   总被引:1,自引:0,他引:1  
为提高杆式射流对钢靶的侵彻能力,设计了一种偏心亚半球药型罩,通过爆轰波碰撞理论推导出药型罩压垮速度,并结合改进的PER理论建立了杆式射流成形的模型。分析了药型罩结构参数对爆轰波碰撞压力的影响规律,获得了等质量变壁厚药型罩射流质量及速度分布的变化规律。结果表明:马赫反射压力随偏心距的增大而增大,随外壁曲率半径的增大而减小,而正规斜反射压力与马赫反射压力变化规律相反,且马赫反射压力受药型罩结构影响较大;通过对比不同方案,罩顶与罩口部厚、中间薄形状药型罩形成的射流质量提高了29.5%,头部速度提高了21.3%,且速度梯度最大,相同炸高条件下侵彻深度提高了约2倍装药直径。针对优化结构进行了数值模拟和实验验证,通过对爆轰波波形与药型罩结构合理的匹配设计,使形成的杆式射流成形及侵彻性能得到显著提升。  相似文献   

7.
以球型空腔膨胀理论为基础,提出了一个计算陶瓷靶板阻力的损伤模型,该模型考虑了损伤因子对陶瓷靶板弹道性能的影响.结合不可压缩流体力学理论,对射流侵彻陶瓷靶板的侵彻速度进行了理论值计算,并与未考虑损伤的侵彻速度进行了比较,该模型的计算结果更接近实验结果.建立了射流侵彻陶瓷靶板的数值计算模型,对铜射流侵彻陶瓷靶的动态破坏过程进行了研究,讨论了药型罩的锥角、壁厚对射流侵彻结果的影响,结果表明:相同锥角的药型罩,壁厚对陶瓷靶板孔径的影响较小;同壁厚的药型罩,随着锥角的增大,侵彻孔径增大.侵彻速度的数值模拟结果与理论结果进行了比较,得到了较好的一致性.  相似文献   

8.
大质量高速动能弹侵彻钢筋混凝土的实验研究   总被引:1,自引:0,他引:1  
设计了弹头形状和弹体结构合理的金属侵彻弹体,利用口径为320 mm的平衡炮,采用次口径加载技术,将直径为136 mm、长度为680 mm、质量为52 kg的金属侵彻体加速到1300 m/s,去侵彻尺寸为3 m3 m6 m的钢筋混凝土靶。实验结果表明:次口径弹托与弹丸完全分离,弹体飞行姿态稳定,飞行攻角小于2,弹体侵彻6 厚的钢筋混凝土后剩余速度约为260 m/s。实验后回收的金属弹体结构完整,仅弹体头部存在一定塑性变形,弹体质量损失约1.2%,长度缩短约0.7%,弹靶作用过程的侵蚀现象不明显。  相似文献   

9.
在二级轻气炮上对新设计的一种钨合金/黄铜的有间隙的复合结构靶板开展了抗侵彻实验研究。靶板材料为多层结构,层与层之间有10mm到50mm的间隙。为了得到最优的结构设计参数,在二级轻气炮上对这种结构的靶板进行了弹丸质量为3g~20g、弹丸速度为2000m/s~4100m/s的抗侵彻实验研究。研究结果表明,高密度、高硬度的93W合金板和H62黄铜是防护结构最佳选材之一;用它们的两组合设计的四层复合结构靶能抵抗质量约20g,速度约2000m/s的钢质破片的侵彻。这一研究结果为选择合理的防护结构提供实验支持。  相似文献   

10.
一种新型聚能战斗部的实验研究   总被引:3,自引:0,他引:3  
本文根据能量利用的观点提出了一种新型聚能战斗部装药结构,指出开展其研究的重要价值;并对其射流与弹丸的成型过程和破甲机理进行了理论分析,在此基础上进行了系统的静破甲实验,并对该战斗部装药结构的一些关键结构参数(例如空孔孔径、炸高、小锥角聚能罩底面直径和锥角角度)和大、小锥角聚能罩材料之间的匹配关系对静破甲效果的影响进行了系统的分析研究。实验结果表明:在各自最佳炸高条件下,该新型聚能装药结构比普通EFP装药结构,在保持相当穿孔孔径、同等装药和壳体约束条件下,可以提高穿深达50%左右。进一步深化了聚能效应的内涵和丰富了打击目标的手段。  相似文献   

11.
The effect of locust bean gum (LBG), a non-gelling polysaccharide, on the thermal gelation of -lactoglobulin, at 80 °C, and on the gel properties after quenching to 20 °C was studied by small deformation rheology and by confocal laser scanning microscopy (CLSM). The concentration of -lactoglobulin was kept constant at 10 wt% and that of LBG varied from 0 to 0.78 wt%. For all the concentrations studied, the presence of LBG enhanced the aggregation rate and the strength of the protein gel, but the magnitude of these effects depended on the -lactoglobulin/LBG ratio: 0.35 wt% LBG resulted only in a very slight increase of G, whereas 0.45 wt% LBG caused a ~fivefold jump; for higher LBG concentrations, the differences between the systems were quite small. The linear viscoelastic behaviour, at 20 °C, was characterized over the 10–5 to 100 rad/s frequency range by combining the dynamic and retardation tests. Compliance data were converted from the time to the frequency domain. The viscoelastic plateau was seen to extend down in the 0.001–0.0001 rad/s range and its lower limit seemed not to vary much with LBG concentration. Its upper limit was visibly beyond 100 rad/s. The observed microstructure of the gels showed that they were two-phase and that the state of aggregation of -lactoglobulin was influenced by the -lactoglobulin/LBG ratio.This paper was presented at the first Annual European Rheology Conference (AERC) held in Guimarães, Portugal on September 11–13, 2003  相似文献   

12.
Detonation initiation is investigated in aluminium/oxygen and aluminium/air mixtures. Critical conditions for initiation of spherical detonations are examined in analogy with the criteria defined for gaseous mixtures, which correlate critical parameters of detonation initiation to the characteristic size of the cellular structure. However, experimental data on the detonation cell size in these two-phase mixtures are very scarce, on account of the difficulty to perform large-scale experiments. Therefore, 2D numerical simulations of the detonation cellular structure have been undertaken, with the same combustion model for Al/air and Al/O2 mixtures. The cell size is found to be λ = 37.5 cm for a rich (r = 1.61) aluminium–air mixture, and λ = 7.5 cm for a stoichiometric aluminium-oxygen mixture, which is in reasonable agreement with available experimental data. Calculations performed in large-scale configurations (up to 25 m in length and 1.5 m in lateral direction) suggest that the critical initiation energy and predetonation radius for direct initiation of the unconfined detonation in the aluminium–air mixture are, respectively, 10 kg of TNT and 8 m. Moreover, numerical simulations reveal that the structure of the detonation wave behind the leading front is even more complicated than in pure gaseous mixtures, due to two-phase flow effects. This paper is based on work that was presented at the 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.  相似文献   

13.
The recompression shock system in blunt-base cylinder wakes at 0° and 10° angles-of-attack to an M=2.46 freestream is visualized by planar laser scattering, allowing the instantaneous position of the shock to be determined over a wide region of the flow. The recompression shock at =0° is highly branched and appears to be quite weak. The shock appears to be stronger at =10°, with far less branching. Correlation analysis for the =10° wake indicates that fluctuations in the shock position tend to be correlated over relatively long streamwise distances. Analysis of the shock angle for the angle-of-attack wake shows a significant variation in the local angle of the shock, with trends similar to those seen for the unsteadiness in the shock position.  相似文献   

14.
The conditions of realization of regimes, detected in ideal gas theory [1, 2], with a floating Ferri point on the windward side of a wing with supersonic leading edges and breakdown of the conical flow in the presence of turbulent boundary layer separation are studied using experimental data on the flow over conical V-shaped wings. The experiments were carried out on three models of V-shaped wings with sharp leading edges having a convergence angle=40°, apex angles=30, 45, and 90° and lengths along the central chordL=100, 100, and 70 mm, respectively. The free-stream Mach numberM =3, and the unit Reynolds number Re=1.6 ·108 m–1. Boundary layer transition took place 10 mm from the leading edges of the models at a local Reynolds number Re=(1.5–2)·106. Thus, on most of the wing surface the inner shock waves interacted with a turbulent boundary layer. In the experiments we employed; optical methods, which made it possible to observe shadow flow patterns in a plane normal to the rib of the V-shaped wing [3], as well as in the wake behind the wing and its leading edges (Töpler schlieren method); the oil-film visualization method for obtaining data on the position and dimensions of the separation zones and limiting streamline patterns on the surface of the model. The pressure distribution over the wing span was recorded by means of an automated data collection and processing system based on IKD6TD transducers. The errors of the pressure measurements did not exceed 1 %.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 137–150, March–April, 1992.  相似文献   

15.
Oil–water two-phase flow experiments were conducted in a 15 m long, 8.28 cm diameter, inclinable steel pipe using mineral oil (density of 830 kg/m3 and viscosity of 7.5 mPa s) and brine (density of 1060 kg/m3 and viscosity of 0.8 mPa s). Steady-state data on flow patterns, two-phase pressure gradient and holdup were obtained over the entire range of flow rates for pipe inclinations of −5°, −2°, −1.5°, 0°, 1°, 2° and 5°. The characterization of flow patterns and identification of their boundaries was achieved via observation of recorded movies and by analysis of the relative deviation from the homogeneous behavior. A stratified wavy flow pattern with no mixing at the interface was identified in downward and upward flow. Two gamma-ray densitometers allowed for accurate measurement of the absolute in situ volumetric fraction (holdup) of each phase for all flow patterns. Extensive results of holdup and two-phase pressure gradient as a function of the superficial velocities, flow pattern and inclinations are reported. The new experimental data are compared with results of a flow pattern dependent prediction model, which uses the area-averaged steady-state two-fluid model for stratified flow and the homogeneous model for dispersed flow. Prediction accuracies for oil/water holdups and pressure gradients are presented as function of pipe inclination for all flow patterns observed. There is scope for improvement for in particular dual-continuous flow patterns.  相似文献   

16.
In the present work a comparative study of steady state wall-to-bed heat transfer was conducted along the risers of height 2.85 m of three different circulating fluidized beds (CFBs) with bed cross sections of 0.15 m × 0.15 m, 0.20 m × 0.20 m, and 0.25 m × 0.25 m, respectively. Experiments were conducted on each CFB unit for five superficial air velocities (U = 2.5 m/s, 2.75 m/s, 3 m/s, 3.3 m/s, and 4 m/s) and two different weights of sand inventory per unit area of the distributor plate (P = 1750 N/m2 and P = 3050 N/m2) with average sand particle size of 460 μm. Bed temperature distributions across the three risers were measured and compared at different heights (1.04 m, 1.64 m, and 2.24 m above the distributor plate). Axial distribution of heat transfer coefficient along the height of riser was evaluated and compared for the three bed cross sections. Effect of superficial velocity of air, sand inventory, and bed cross section on bed temperature and heat transfer coefficient was investigated. An empirical correlation was developed for the bed Nusselt number as a function of various non-dimensional parameters based on the parametric study. The correlation was compared with available literatures.  相似文献   

17.
The results of balance aerodynamic tests on model straight wings with smooth and ribbed surfaces at an angle of attack =–4°–12°, Mach number M=0.15–0.63, and Reynolds number Re=2.4·106–3.5·106 are discussed. The nondimensional riblet spacings +, which determines the effect of the riblets on the turbulent friction drag, and the effect of riblets on the upper and/or lower surface of a straight wing on its drag, lift, and moment characteristics are estimated.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 33–38, March–April, 1995.  相似文献   

18.
Typical film-cooling configuration of a symmetrical turbine blade leading edge is investigated using a three-dimensional finite volume method and a multi-block technique. The computational domain includes the curved blade surface as well as the coolant regions and the plenum. The turbulence is approximated by a two layer k– model. The computations have been performed using the TLV two-layer and the TLVA models. However, the utilization of the TLV and TLVA models has not improved the prediction of the lateral averaged film cooling effectiveness of gas turbine blades when compared with those obtained using wall function strategy.The general features of film cooling such as jet blow-off, high turbulence intensity in the shear layer, and secondary rotating vortices are captured in the present study. Comparison between predicted and experimental results indicates that the trends of the thermal field are well predicted in most cases. In the second part of this study, the influence of lateral injection angle on lateral averaged adiabatic film cooling effectiveness is investigated by varying the lateral injection angle around the experimental value ( = 25°, 30°, 35° and 60° spanwise to the blade surface). It was found that the best coverage and consequently, the maximum film cooling effectiveness are provided by the most extremely inclined injection angle, which is 25° in this investigation.  相似文献   

19.
Madhukalya  B.  Das  R.  Hosseini  K.  Baleanu  D.  Hincal  E. 《Nonlinear dynamics》2023,111(9):8659-8671

The formation of ion-acoustic solitons (IASs) in an unmagnetized plasma with negative ions has been investigated through the KdV equation in both the situations \(Q^{\prime}\left( { = m_{j} /m_{i} = {\text{negative}}\;{\text{to}}\;{\text{positive}}\;{\text{ion}}\;{\text{mass}}\;{\text{ratio}}} \right)\) less and greater than one and the mKdV equation only for \(Q^{\prime} > 1\). The existence of both KdV and mKdV solitons has been established for \(\alpha \left( { = {\text{ion}}\;{\text{to}}\;{\text{electron}}\;{\text{temperature}}\;{\text{ratio}}} \right)\; > \;\beta \left( { = {\text{negative}}\;{\text{ion}}\;{\text{to}}\;{\text{electron}}\;{\text{temperature}}\;{\text{ratio}}} \right)\) and \(\alpha < \beta\), which is the new outcome of the current investigation. Furthermore, the existence of both compressive and rarefactive solitons for \(Q^{\prime} > 1\) and \(Q^{\prime} < 1\) has been demonstrated.

  相似文献   

20.
This paper uses the numerical simulation LS-DYNA, to simulate the process of the projectile with high rotating speed and different penetration angles penetrating into the moving vehicular door. Because of the moving of the vehicular door, the projectile will turn, and the ballistic trajectory will migrate. At the same time, the projectile will deflect from the vehicular door because of the projectile’s penetration angles. In the process of the penetration, the projectile’s moving speed is 300 m/s; rotating speed is 0 and 6370 r/s. The vehicular door’s moving speed is 80 m/s. The penetration angle is 30°, 45°, 60° and 90°. The projectile is the semi-sphere nose projectile whose diameter is 7.62 mm; the vehicular door’s thickness is 2 mm. The material model is the JOHN-COOK material model that can characterize strain, strain rate hardening and thermal softening effects. Through comparing with the results by simulation to study the effects of the projectile’s final velocity, the angle of rotation, the ballistic trajectory’s migration and the projectile’s deflection with different projectile’s rotating speeds and penetration angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号