首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 254 毫秒
1.
合成了一种新型S-N无灰添加剂(DBTT);利用四球摩擦磨损试验机考察了单剂DBTT、磷酸三甲酚酯(TCP)以及含不同质量比的DBTT和TCP的复合添加剂在500N加氢基础油中的摩擦学性能;用X射线光电子能谱仪和扫描电子显微镜分析了磨损表面形貌和元素化学状态.结果表明:合成的DBTT在500N加氢基础油中有良好的溶解性;所考察的添加剂都能有效提高基础油的承载能力;在一定条件下单剂DBTT和TCP能够有效提高基础油的减摩和抗磨性能;DBTT/TCP复合剂在基础油中表现出协同抗磨效应和增摩效应.含上述添加剂的500N加氢油在摩擦过程中发生摩擦化学反应,生成混合边界润滑膜,从而起减摩抗磨作用.  相似文献   

2.
钢-铜摩擦副在边界润滑条件下的减摩抗磨机理研究   总被引:2,自引:1,他引:1  
冯欣 《摩擦学学报》2012,32(3):209-214
用SRV摩擦磨损试验机分别考察了聚α烯烃基础油含磷氮添加剂和两种含氟硅油添加剂在钢-铜摩擦副滑动下的摩擦学性能,用扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)观察并分析了铜磨斑表面形貌和磨斑表面主要元素的化学状态.结果表明:含磷氮添加剂和含氟硅油添加剂均具有优良的减摩和抗磨性能;磷、氮和氟等在摩擦表面生成的摩擦化学产物是提高摩擦副抗磨减摩性能的根本原因.  相似文献   

3.
硫系和磷系添加剂对菜籽油摩擦学性能的影响   总被引:1,自引:0,他引:1  
采用四球摩擦磨损试验机考察了硫系添加剂T321、磷系添加剂P120和T321-P120复配添加剂对菜籽油抗磨和极压性能的影响.结果表明:T321单剂、P120单剂和T321-P120复配添加剂均能够有效地提高菜籽油的抗磨和承载能力;T321-P120复配添加剂能够有效地改善菜籽油的减摩性能;T321和P120具有协同减摩、抗磨和极压作用,当二者的配比适当时,相应油样的综合摩擦学性能最佳.  相似文献   

4.
含氟硅油作为润滑油添加剂的摩擦学性能研究   总被引:1,自引:1,他引:0  
冯欣 《摩擦学学报》2011,31(3):205-209
用SRV摩擦磨损试验机评价了2种含氟硅油在聚α烯烃基础油中作为添加剂时的摩擦学性能,用扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)观察并分析了磨斑表面形貌和主要元素的化学状态,探讨了含氟硅油的摩擦化学机制。结果表明:含氟硅油具有优良的减摩和抗磨性能;含氟硅油在摩擦作用下发生分解,在摩擦副表面生成的含氟的摩擦化学产物是提高摩擦副抗磨减摩性能的关键因素。  相似文献   

5.
在四球摩擦磨损试验机上对比考察了几种硫代磷酸酯和二烷基二硫代磷酸锌(ZDDP)作为菜籽油添加剂的摩擦学性能,并对比分析了两类添加剂的抗乳化能力.用X射线光电子能谱仪分析了磨损表面元素化学状态,并探讨了添加剂的减摩抗磨作用机理.结果表明:在几种磷酸酯分子中引入硫使得其极压抗磨性能得到不同程度的提高;在摩擦过程中,钢球表面发生了基础油的化学吸附以及添加剂的化学吸附和摩擦化学反应,生成由菜籽油和添加剂摩擦化学反应产物组成的边界润滑膜;磷酸酯的抗乳化性能随分子结构的不同存在很大差异.四硫代三正辛酯的摩擦学性能和抗乳化性能优于ZDDP,是一种潜在的环境友好多功能润滑油添加剂.  相似文献   

6.
以羟基硅酸镁复合矿物粉体作为润滑油添加剂,采用MM-200型环-块摩擦磨损试验机研究了45#钢摩擦副的减摩抗磨性能;采用扫描电子显微镜观察了钢环磨损表面和润滑油所含添加剂颗粒的形貌,采用能谱仪分析了钢环磨损表面成份,采用表面形貌仪测定了钢环磨损表面粗糙度,进而探讨了复合矿物粉体添加剂的抗磨自修复机理.结果表明:羟基硅酸镁复合矿物粉体添加剂对钢-钢摩擦副具有良好的减摩抗磨作用.在基础油(46#机油)润滑条件下,随着载荷的增加,磨损机制由轻微擦伤转变为严重擦伤和黏着磨损.在含添加剂的油润滑条件下,较低载荷下钢环磨损表面发生轻微擦伤,且擦伤程度比基础油润滑下的更轻;而在较高载荷条件下钢环磨损表面非常光滑,呈现轻微的黏着磨损迹象.其原因在于在较低载荷条件下,添加剂在摩擦过程中可发生团聚形成大小不一的球状团聚体,球状团聚体可起到微球轴承的作用,使钢-钢摩擦副由滑动接触状态转变为滚动接触状态,从而显著降低摩擦系数,提高抗磨性能.而在较高载荷下,羟基硅酸镁复合矿物粉体添加剂易在钢-钢摩擦副磨损表面形成自修复抗磨层,从而隔离金属表面的直接接触,起到良好的减摩抗磨作用.  相似文献   

7.
十二烷氧基硼酸锌的合成及其抗磨减摩性能研究   总被引:10,自引:2,他引:8  
合成了含硼及锌的油溶性化合物十二烷氧基硼酸锌,将其用作润滑油抗磨减摩添加剂,并用四球及环-块摩擦磨损试验机评价了其摩擦学性能。结果表明:十二烷氧基硼酸锌添加剂使500SN基础油的抗磨性能得到明显改善,其承载能力明显提高,摩擦系数明显降低,扫描电子显微镜观察证实磨斑表面有含硼沉积物,结合XPS分析可以推断添加剂在摩擦过程中发生了摩擦化学反应,并在摩擦副表面形成了抗磨减摩膜,从而改善摩擦磨损性能。  相似文献   

8.
首先通过摩擦学和电化学方法,对比研究了B-N系添加剂(三乙醇胺硼酸酯,TAB)和P系添加剂(磷酸三甲酚酯,TCP)2种有机功能分子高温重载条件下在聚乙二醇(PEG)基础油中的摩擦学行为,以及在盐酸腐蚀溶液中的缓蚀性能.然后采用扫描电子显微镜与X射线光电子能谱等表面分析手段对磨损表面和腐蚀表面的微观形貌进行深入研究,并分析讨论了2种有机功能分子的高温润滑承载和缓蚀机理. 2种有机功能分子作为PEG添加剂的承载能力均超过了400 N,表现出优异的高温极压性能.在高温重载摩擦磨损试验中,TAB作为添加剂能够显著降低PEG基础油的摩擦系数和磨损量,表现出良好的减摩抗磨效果;对于TCP而言,作为添加剂可以明显降低PEG基础油摩擦系数,却表现出加剧磨损的现象.电化学试验结果表明,2种有机功能分子都具有一定的缓蚀作用,TAB缓蚀效率优于TCP.结合表面分析结果发现,TAB作为添加剂能够在金属表面形成较强吸附膜以及以硼酸酯、硼的氧化物和氮化物为主的非牺牲性摩擦膜,从而表现出良好的缓蚀性能和优异的高温极压抗磨性能;TCP作为添加剂与金属表面发生了较为剧烈的摩擦化学反应,生成以磷酸铁和氧化铁为主的致密摩擦...  相似文献   

9.
利用MM-200型摩擦磨损试验机对比考察了聚四氟乙烯(PTFE)及其铜和镍填充复合材料在干摩擦以及液体石蜡和含商品添加剂二烷基二硫代磷酸锌(ZDDP)的液体石蜡-润滑下同GCr15轴承钢对摩时摩擦磨损性能,采用能量色散X射线显微分析(EDXA)测定了钢环磨损表面S和Zn元素的面分布,进而探讨了ZDDP对液体石蜡减摩抗磨作用的影响.研究表明:液体石蜡及含2%ZDDP的液体石蜡润滑均可大幅度降低摩擦副的摩擦系数,同时可显著降低PTFE-30%Ni复合材料的磨痕宽度,但对PTFE-30%Cu复合材料抗磨性能的影响不大.ZDDP作为添加剂可以有效地提高液体石蜡的抗磨作用,但对其减摩作用几乎无影响;ZDDP作为添加剂在摩擦过程中未发生摩擦化学反应,而是以物理吸附或化学吸附的方式在摩擦副接触表面成膜,从而起到抗磨作用.  相似文献   

10.
铋纳米微粒添加剂的摩擦学性能研究   总被引:27,自引:6,他引:27  
采用液相分散法制备了平均粒径为60 nm的油溶性铋纳米微粒,用四球摩擦磨损试验机考察了所制备的铋纳米微粒作为润滑油添加剂的减摩抗磨性能.结果表明,当添加量处于0.04%~1.00%范围内时,铋纳米微粒表现出良好的减摩抗磨性能,并能显著提高基础油的失效负荷.  相似文献   

11.
合成了 3种含硫硼酸酯 ,利用四球摩擦磨损试验机考察了含硫硼酸酯、磷酸三甲酚酯及其复合添加剂对菜籽油摩擦学性能的影响以及添加剂结构、组成与其摩擦学性能的关系 ,用 X射线光电子能谱仪和扫描电子显微镜观察分析了磨损表面的形貌和元素化学状态 .结果表明 :合成的含硫硼酸酯在一定浓度范围可以改善菜籽油的抗磨性能 ;所考察的添加剂在适当的添加量下均可提高菜籽油的承载能力和抗磨性能 ,但减摩效果不显著 ;含上述添加剂的菜籽油在摩擦过程中发生摩擦化学反应 ,生成由菜籽油甘油酯和添加剂摩擦化学反应产物组成的边界润滑膜 ,从而改善菜籽油的摩擦学性能  相似文献   

12.
含硫硼酸酯中硫和硼在菜籽油中的协同减摩抗磨作用   总被引:3,自引:0,他引:3  
合成了一系列含硫硼酸酯 ,在四球摩擦磨损试验机上考察了含硫硼酸酯化合物作为菜籽油添加剂的摩擦学性能 ,并用扫描电子显微镜和 X射线光电子能谱仪观察分析了钢球磨损表面形貌和表面膜中元素的化学状态 .结果表明 :含硫硼酸酯的摩擦学性能与其分子内硫和硼的含量密切相关 ;结构相似、元素组成不同的硼酸酯的抗磨效果与所含活性元素的数量不存在对应关系 ,而结构相似且 S和 P含量相同的硼酸酯的摩擦磨损行为相似 .钢球磨损表面分析结果表明 ,在摩擦过程中含硫硼酸酯与钢球表面发生摩擦化学反应 ,形成了含硫、硼、氧及碳等元素的表面保护膜  相似文献   

13.
利用四球摩擦磨损试验机考察了磷酸三甲酯(TCP)和亚磷酸二正丁酯(DBP)添加剂对菜籽油摩擦学性能的影响,用X射线光电子能谱和扫描电子显微镜观察分析磨损表面的形貌和元素化学状态。结果表明:TCP和DBP能明显改善菜籽油的抗磨性能并提高其承载能力,但减摩效果不好;含上述添加剂的菜籽油在摩擦过程中发生摩擦化学变化,生成由菜籽油三甘油酯和添加剂摩擦化学反应产物组存的边界润滑膜,从而改善抗磨性能并提高承载  相似文献   

14.
磷氮化改性菜籽油润滑添加剂的制备及其摩擦学性能   总被引:11,自引:1,他引:10  
在菜籽油中引入磷和氮,合成了2种新型磷氮化改性菜籽油添加剂,并利用红外光谱对其主要官能团进行了鉴定,利用四球试验机考察其在菜籽油中的抗磨性能与极压性能,用扫描电子显微镜观察分析磨斑表面的形貌。同时通过对磨痕进行X射线光电子能谱分析,探讨了磷氮化改性菜籽油润滑添加剂的极压抗磨作用机理,结果表明:两类磷氮化改性菜籽油添加剂能明显改善菜籽油的抗磨和减摩性能;其润滑作用机理是由于长链菜籽油分子的载体作用、磷和氮的高反应活性以及三者的协同作用与磨擦金属表面形成了一层高强度的吸附膜和(或)摩擦化学反应膜。  相似文献   

15.
二烷基二硫代磷酸镧与硼酸酯的协同减摩抗磨作用机理   总被引:2,自引:0,他引:2  
用四球摩擦磨损试验机考察了油溶性二烷基二硫代磷酸镧(LaDDP)和有机硼酸酯(OB)的减摩抗磨性能,探讨了LaDPP与有机硼酸酯的协同减摩抗磨作用及其协同摩擦化学反应机理;采用X射线光电子能谱仪和俄歇电子能谱仪对比分析了磨斑表面典型元素组成、化学状态和深度分布。结果表明,LaDDP和有机硼酸酯具有优良的减摩抗磨性能,且二者具有优异的协同减摩抗磨作用,其主要原因在于稀土元素镧促进了有机硼酸酯的分解及硼的渗透,生成了由La、La2O3、B2O3、FeS、硫酸盐和磷酸盐等组成的边界润滑膜,形成了镧与硼的渗透层。  相似文献   

16.
苯并噻唑衍生物在菜籽油中的摩擦学性能研究   总被引:6,自引:0,他引:6  
利用四球摩擦磨损试验机考察了所合成的苯并噻唑衍生物添加剂在菜籽油中的摩擦学性能,并用扫描电子显微镜和X射线光电子能谱仪观察分析了磨斑表面的形貌和元素化学状态。结果表明:苯并噻唑氨基甲酸衍生物添加剂可以显著改善菜籽油的减摩抗磨性能和承载能力;含上述添加剂的菜籽油在摩擦过程中发生了摩擦化学反应,生成了含菜籽油甘油酯、有机硫化物、硫酸亚铁等的边界润滑膜,从而改善了菜籽油的摩擦学性能。  相似文献   

17.
醇和羧酸添加剂对菜籽油抗磨与极压性能的影响   总被引:3,自引:1,他引:2  
在四球摩擦磨损试验机上考察了醇-菜籽油及羧酸-菜籽油对钢-钢摩擦副抗磨与极压性能的影响,并分析了其润滑机制。结果表明,醇不能改善菜籽油的抗磨性能及承载能力,羧酸能明显改善菜籽油的抗磨性能,但却降低其承载能力,这与菜籽油本身的特性及三者的极性强弱有关。钢球磨损表面XPS分析表明:2种润滑剂体系在摩擦过程中均形成了复杂的表面保护膜。2种润滑剂体系在钢球表面形成的保护膜的特性不同,这决定了它们个有不同的  相似文献   

18.
选择3种具有不同抗磨性能的纳米组分,制备了具有不同界面特性的聚合物/无机纳米复合材料;考察了纳米复合材料的减摩抗磨性能和机理,探讨了关于纳米复合材料润滑油添加剂的摩擦学功能设计准则。结果表明:对聚合物与无机纳米组分界面进行设计优化后能明显提高纳米复合材料的摩擦学性能。实现聚合物与无机纳米组分界面的优化设计后,聚合物与无机纳米组分之间具有更好的相容性,无机纳米组分在聚合物基体中分布更均匀;当聚合物基体在摩擦热和剪切作用下熔融分解后,裸露出来的具有高活性的无机纳米组分可在摩擦副接触表面形成具有良好摩擦学性能的表面膜。  相似文献   

19.
苯并三氮唑及其衍生物在菜籽油中的摩擦学性能研究   总被引:10,自引:7,他引:10  
利用四球试验机考察了苯并三氮唑及其衍生物在菜籽油中的摩擦学性能,并用X射线光电子能谱和扫描电子显微镜分析观察磨斑表面的化学组成和形貌。结果表明,苯并三氮唑在菜籽油中有良好的抗磨作用,在其分子中引入长链烷基虽然提高了其在菜籽油中的溶解度,但却降低了其抗磨减摩性能,这主要是由于苯并三氮唑有效成分的减少以及添加剂和基础油之间的竞争吸附所致。  相似文献   

20.
几种油性剂和极压抗磨剂对T8钢/Al2O3摩擦磨损性能的影响   总被引:1,自引:1,他引:1  
采用Falex型摩擦磨损试验机考察了T8钢/Al2O3陶瓷摩擦副在3种油性剂(T405、T406和T451)与3种极压抗磨剂(T309、T306、T321)作用下的摩擦学性能;用扫描电子显微镜观察试销表面磨损状态;用俄歇电子能谱仪分析了摩擦表面元素化学成分。结果表明:3种油性剂都可以不同程度地改善摩擦副的摩擦磨损性能,其中尤以T405作用效果最佳;3种极压抗磨剂均具有较好的减磨抗磨性能,其中T309的抗磨性能最为突出,T321与T306可以明显降低摩擦系数,相比之下两者磨损率较大;俄歇电子能谱分析揭示在T309作用下,由于摩擦化学反应在T8钢试销磨损表面形成了含S、P物质层;油性剂作用下摩擦副的磨损形式主要为磨料磨损,而T309作用下磨损形式主要为磨料磨损与摩擦化学(腐蚀)磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号