首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A three-point bend fixture has been designed, fabricated, and utilized to demonstrate the feasibility of performing in-situ J-testing at ambient and elevated temperatures inside a scanning electron microscope (SEM). Using the three-point bend test technique, in-situ SEM J-testing has been performed to measure the crack mouth opening displacement and crack extension as a function of the applied load in order to generate J-R curves for Zircaloy-4 at 25°C and 316°C. Once the J-R curve is determined, an equivalent KJ-resistance (KJ-R) curve is computed on the basis of a relationship between the J-integral (J) and the stress intensity factor (K). The J-R and KJ-R curves of Zircaloy-4 exhibit a rising R-curve behavior, while the elastic K-R curve underestimates the fracture resistance of Zircaloy-4 once substantial crack extension has occurred. For the specimen dimensions considered, the J-R curves generated by in-situ SEM J-tests are not sensitive to the specimen geometry and measure the actual fracture resistance of the material. Furthermore, the onset of crack extension is dictated by the emission of one or more slipbands from the crack tip, and a change in the crack-tip displacement field, followed by void formation along the slipband, and linkage of the voids with the main crack.  相似文献   

2.
Three-dimensional (3D) elastic–plastic finite element analyses (FEA) are performed to study constraint effect on the crack-front stress fields for single-edge notched bend (SENB) specimens. Both rectangular and square cross-section of the specimens with a deep crack of a/W=0.5 are considered to investigate the effect of specimen size. A square-cross-section specimen with a shallow crack of a/W=0.15 is also considered to examine the effect of crack depth. Stresses from FEA at the crack front on different planes of the specimen are compared with those determined by the JA2 three-term solution. Results show that in-plane stress fields can be characterized by the three-term solution throughout the thickness even in the region near the free surface. Cleavage fracture toughness data is compared to predict the effects of specimen size and crack depth on fracture behavior. It is found that the distributions of crack opening stress are nearly the same for the SENB specimens at the critical J which is consistent with the RKR model. Furthermore our results indicate that there is a distinct relationship between the crack-front constraint and the cleavage fracture toughness. By introducing the failure curves, the minimum fracture toughness and scatter band can be well captured using the JA2 approach.  相似文献   

3.
Propagation behaviors of obliquely-crossed microcracks induced by matrix cracks in adjacent plies of composite laminates were numerically analyzed using finite element modeling. Oblique coordinate system along obliquely-crossed cracks was defined and applied to the finite element formulation, which enabled geometrically parametric analysis for arbitrary oblique angles using a single discrete model. Three-dimensional stress analyses of [S/θn/90]s laminate with microcracks in θ-ply and fully developed matrix cracks in 90-ply were performed under various conditions of angle θ, θ-ply crack length, θ-ply thickness, etc. Energy release rates associated with θ-ply crack propagation in the θ-ply fiber direction were calculated in order to assess θ-ply cracking conformations. The results suggested that presence of 90-ply cracks affects θ-ply crack propagation, especially mode-I energy release rates, depending on angle θ. Furthermore, effects of angle θ, θ-ply thickness and S layer configuration on the interaction between matrix cracks in θ- and 90-plies were clarified. Finally, crack accumulation behaviors in [0/θ2/90]s laminates were experimentally investigated and compared with the analytical results.  相似文献   

4.
The fracture strength and crack-opening displacement of notched graphite/epoxy laminates were measured experimentally using the center-cracked tension-specimen geometry. Four replicate tests were conducted for a variety of laminate stacking sequences, thicknesses, and notch lengths. Most laminates exhibited extensive notch-tip damage prior to fracture. Values of crack-tip-opening displacement (CTOD) at fracture were estimated from values of crack-opening displacement measured at the crack center line. CTOD was independent of specimen crack length for the [0/±45/90] s , [0/±45/90]15s , [0/±45] s , [0/±45/]15s , and [0/90]24s laminates. In addition, notched laminate strength was accurately predicted using a Dugdale-type model along with the estimated CTOD.Paper was presented at V International Congress on Experimental Mechanics held in Montreal, Quebec, Canada on June 10–15, 1984.  相似文献   

5.
The modified strip-yield model based on the Dugdale model and two-dimensional approximate weight function method were utilized to evaluate the effect of in-plane constraint, transverse stress, on the fatigue crack closure. The plastic zone sizes and the crack opening stresses considering transverse stress were calculated for four specimens: single edge-notched tension (SENT) specimen, single edge-notched bend (SENB) specimen, center-cracked tension (CCT) specimen, double edge-notched tension (DENT) specimen under uniaxial loading. And the crack opening behavior of the center-cracked specimen under biaxial loading was also evaluated. Normalized crack opening stresses σopmax for four specimens were successfully described by the normalized plastic zone parameter Δωrev considering transverse stress, where Δωrev and ω are the size of the reversed plastic zone at the moment of first crack tip closure and the size of the forward plastic zone for maximum stress, respectively. The normalized plastic zone parameter with transverse stress also was satisfactorily correlated with the behavior of crack closure for CCT specimen under biaxial loading.  相似文献   

6.
T-stress expressions are provided for three-point bending (TPB) beams and compact tension (CT) specimens and then its influence on mode I fracture toughness of concrete is investigated. The study shows that T-stress is dependent on the specimen's geometry and the material's property as well, and for TPB and CT specimens of regular size, T-stress is so small that its consequences can be neglected. The study also indicates that concrete specimen size should be carefully chosen to make sure the existence of K-dominance ahead of the crack tip, thus fracture toughness extracted from these specimen configurations can be reliable.  相似文献   

7.
A novel impact three-point bend test method has been developed for determining the dynamic fracture-initiation toughness,K Id, over the range of loading rates . The split-Hopkinson pressure-bar technique is used to measure dynamic loads applied to a bend specimen with a fatigue precrack. The stress-intensity-factor histories for the bend specimen are evaluated by means of a dynamic finite-element technique and the standard formula (ASTM E 399-83) based on the measured dynamic loads. The time of crack initiation is determined using a strain gage mounted near a crack tip. The results for 7075-T6 aluminum alloy and Ti−6A1−2Sn−4Zr−6Mo alloy indicate that the reliableK Id data can only be obtained by evaluation procedures which take the inertial effects into account. It is shown that the novel impact bend test method in conjunction with dynamic finite-element analysis provides an effective means of characterizing the dynamic fracture-toughness parameterK Id.  相似文献   

8.
Transverse ply cracking and its induced delaminations at the φ/90° interfaces in [. . . /φi/φm/90n] s laminates are theoretically investigated. Three cracked and delaminated model laminates, one five-layer model (FLM) laminate [SL/φm/902n/φm/SR] T and two three-layer model (TLM) laminates I and II, [φm/902n/φm] T and [SL/902n/SR] T, are designed to examine constraining mechanisms of the constraining plies of the center 90°-ply group on transverse crack induced delaminations, where SL, SR, SL and SR are sublaminates [. . ./φi] T, [φi/. . .] T, [. . ./φi/φm] T and [φm/φi/. . .] T, respectively. A sublaminate-wise first-order shear laminate theory is used to analyze stress and strain fields in the three cracked and delaminated laminates loaded in tension. The extension stiffness reduction of the constrained 90°-plies and the strain energy release rate for a local delamination normalized by the square of the laminate strain are calculated as a function of delamination length and transverse crack spacing. The constraining effects of the immediate neighboring plies and the remote plies are identified by conducting comparisons between the three model laminates. It is seen for the examined laminates that the nearest neighboring ply group of the 90°-plies primarily affects the stiffness reduction and also the normalized strain energy release rate, whereas the influences of the remote constraining layers are negligible.  相似文献   

9.
The dynamic fracture behavior of polyester/TiO2 nanocomposites has been characterized and compared with that of the matrix material. A relationship between the dynamic stress intensity factor,K I and the crack tip velocity,å, has been established. Dynamic photoelasticity coupled with high-speed photography has been used to obtain crack tip velocities and dynamic stress fields around the propagating cracks. Birefringent coatings were used to conduct the photoelastic study due to the opaqueness of the nanocomposites. Single-edge notch tension and modified compact tension specimens were used to obtain a broad range of crack velocities. Fractographic analysis was conducted to understand the fracture process. The results showed that crack arrest toughness in nanocomposites was 60% greater than in the matrix material. Crack propagation velocities prior to branching in nanocomposites were found to be 50% greater than those in polyester.  相似文献   

10.
Fatigue growth behavior of out-of-plane gusset welded joints is studied using the strain energy density factor approach. Fatigue tests on two types of specimens with curvatures of ρ = 0 and ρ = 30 were performed in order to estimate fatigue strength under tension. Fatigue crack growth analysis is carried out to show the effects of initial crack shape, initial crack length and stress ratio. Fatigue crack growth parameters were obtained from crack growth curves assuming constant crack shapes. The results of analysis for the assumed crack shapes agreed well with the experimental data. Fatigue propagation life of the ρ = 30 specimen was larger than that of the ρ = 0 specimen.  相似文献   

11.
In this paper, interlaminar crack initiation and propagation under mode-I with static and fatigue loading of a composite material are experimentally assessed for different test temperatures. The material under study is made of a 3501-6 epoxy matrix reinforced with AS4 unidirectional carbon fibres, with a symmetric laminate configuration [0°]16/S. In the experimental programme, DCB specimens were tested under static and fatigue loading. Based on the results obtained from static tests, fatigue tests were programmed to analyse the mode-I fatigue behaviour, so the necessary number of cycles was calculated for initiation and propagation of the crack at the different temperatures. GN curves were determined under fatigue loading, N being the number of cycles at which delamination begins for a given energy release rate. GICmaxa, aN and da/dNa curves were also determined for different Gcr rates (90%, 85%, 75%, etc.) and different test temperatures: 90 °C, 50 °C, 20 °C, 0 °C, ?30 °C and ?60 °C.  相似文献   

12.
Linear-elastic fracture mechanics and J-integral test methods were used to determine the static fracture behavior of a porous volcanic tuff. Notched and prefatigued specimens of two different sizes were tested in three-point bending. The fracture toughness (K Ic ) and theJ-resistance (J vs. crack growth) curve for each specimen was determined. The results indicate that there is good agreement between the fracture parameters determined by the two methods; however, there is some dependence of the results on specimen size. Possible reasons for this specimen-size dependence are discussed.  相似文献   

13.
The strain fields ahead of crack tips in rock, mortar, and graphite were measured using a photoelastic coating method. A transparent ferroelectric ceramic was used as a coating material to observe the photoelastic fringe pattern. A coating plate of 110–150 μm thick was placed on single-edge-notch specimens, and photoelasticity experiments were conducted in three-point bending under a polarizing microscope. The results show that the principal-strain difference ahead of the crack tip is given by $$\Delta \in = \Delta \in _o [(J/\sigma _{ult} )/r]^m $$ whereσ ult is the ultimate tensile strength,r is the distance from the crack tip, and9? o andm are material constants. Based on this observation, the use of theJ Ic concept in determining the fracture toughness of brittle-microcracking materials is discussed.  相似文献   

14.
A Modified version of the Dugdale-Bilby-Cottrell-Swinden (DBCS) model simulating the effect of plasticity at the tip of a crack in an infinite region was used by kfouri and rice (1978) to calculate the crack separation energy-rate GΔ corresponding to a finite crack growth step Δa during plane strain mode I crack extension. The loading consisted of a remote uniaxial tension σp applied normally to the plane of the crack. Using Rice's path-independent integral J to characterize the applied load in the crack tip region, and assuming the length R of the crack tip plastic zone to be small compared with the length of the crack, an analytical expression was derived relating the ratios (J/GΔ) and (2a/R) for small values of (2a/R). The analytical solution was incomplete in itself in that the value assumed in the plastic region of the DBCS model for the normal stress Y acting on the extending crack surfaces was the product of the yield stress in uniaxial tension σY and an unknown parameter C, the value of which depends on the effect of the local hydrostatic stresses in the case of plane strain conditions. The analytical solution was compared with a numerical solution obtained from a plane strain elastic-plastic finite element analysis on a centre-cracked plate (CCP) of material obeying the von Mises yield criterion. The value used for the yield stress was 310 MN/m2 and moderate isotropic linear hardening was applied with a tangent modulus of 4830 MN/m2. A uniaxial tension σp was applied on the two appropriate sides of the plate. The comparisons showed that the analytical and finite element solutions were mutually consistent and they enabled the value of C to be established at 1.91. In the present paper similar comparisons are made between the analytical solution and the finite element solutions for the CCP of the same material under different biaxial modes of loading. By assuming further that the form of the analytical solution does not depend on the details of the geometry and of the loading at remote boundaries, a comparison has also been made with the results of a finite element analysis on a compact tension specimen (CTS) made of the same material as the CCP. The different values of C obtained in each case are consistent with investigations by other authors on the effect of load biaxiality on crack tip plasticity.  相似文献   

15.
The present study investigates the microstructural size effect on the strength of a bar under axial loading, and on the toughness and crack growth of a beam under three-point bending within the framework of strain gradient elasticity. The gradient responses have been found considerably tougher as compared to the classical theory predictions and the observed deviation increases with increasing values of the non-dimensional parameter g/L (microstructural length over structural length). Based on the analytical solution of the strain energy release rate for the three-point bending case, a new, simple and universal, strain gradient elasticity, brittle fracture criterion and a new, size adjusted fatigue crack growth law have been established. Finally, the analytical predictions of the current modeling compare well with previous experimental data, based on three-point bending tests on single-edge notched concrete beams.  相似文献   

16.
Proposed is a parameter defined to characterize the onset of macrocrack initiation in notched steel bars and cracked three-point bend specimens. It accounts for stress triaxiality and damage by plasticity reflected via the effective plastic strain. Results are obtained for notched round bars made of 20#, A3, DE36I and DE36II steel by assuming that the stress triaxiality increases with increasing effective plastic strain; they are compared with the results by letting the stress triaxiality to be constant. Use are made of experimental data on the necking of tensile bars. The parameter corresponding to the onset of ductile fracture were found to be nearly constant. Since the local effective plastic stress can be related to the crack tip opening (COD) distance, the same procedure can be applied to evaluate fracture initiation in three-point bend specimens with an edge crack. It is found that the COD in AS1204-350 and AS1405-180 structural steels decreased with increasing stress triaxiality.  相似文献   

17.
Dimensionless stress-intensity factors were determined for single-edge-crack solid and hollow round bars loaded in bending. These factors were calculated from experimental compliance (inverse slope of load-displacement curve) measurements made on round bars loaded in three-point bending. The compliance specimens had span to diameter ratios of 6.67 and 3.33, and measurements were made over a range of dimensionless crack lengths from 0.002 to 0.70. The tests were made using 3-in. (76-mm) and 6-in. (152-mm) solid and hollow round bars notched on one side; the hollow bars had an inner to outer diameter ratio of 0.33. A comparison was made with data in the literature for rectangular bars; for ana/D of 0.0001, the dimensionless stress-intensity factor for a solid round bar is 1.3 vs. 2.0 for a rectangular bar.  相似文献   

18.
The cracked semi-circular specimen subjected to three-point bending has been recognized as an appropriate test specimen for conducting mode I, mode II and mixed mode I/II fracture tests in brittle materials. The manufacturing and pre-cracking of the specimen are simple. No complicated loading fixture is also required for a fracture test. However, almost all of the theoretical criteria available for mixed mode brittle fracture fail to predict the experimentally determined mode II fracture toughness obtained from the semi-circular bend (SCB) specimen. In this paper, a modified maximum tangential stress criterion is used for calculating mode II fracture toughness KIIc in terms of mode I fracture toughness KIc. The modified criterion is used for predicting the reported values of mode II fracture toughness for two brittle materials: a rock material (Johnstone) and a brittle polymer (PMMA). It is shown that the modified criterion provides very good predictions for experimental results.  相似文献   

19.
The objective of this paper is to propose a novel methodology for determining dynamic fracture toughness (DFT) of materials under mixed mode I/II impact loading. Previous experimental investigations on mixed mode fracture have been largely limited to qusi-static conditions, due to difficulties in the generation of mixed mode dynamic loading and the precise control of mode mixity at crack tip, in absence of sophisticated experimental techniques. In this study, a hybrid experimental–numerical approach is employed to measure mixed mode DFT of 40Cr high strength steel, with the aid of the split Hopkinson tension bar (SHTB) apparatus and finite element analysis (FEA). A fixture device and a series of tensile specimens with an inclined center crack are designed for the tests to generate the components of mode I and mode II dynamic stress intensity factors (DSIF). Through the change of the crack inclination angle β (=90°, 60°, 45°, and 30°), the KII/KI ratio is successfully controlled in the range from 0 to 1.14. A mixed mode I/II dynamic fracture plane, which can also exhibit the information of crack inclination angle and loading rate at the same time, is obtained based on the experimental results. A safety zone is determined in this plane according to the characteristic line. Through observation of the fracture surfaces, different fracture mechanisms are found for pure mode I and mixed mode fractures.  相似文献   

20.
The direct identification of the cohesive law in pure mode I of Pinus pinaster is addressed in this work. The approach couples the double cantilever beam (DCB) test with digital image correlation (DIC). Wooden beam specimens loaded in the radial-longitudinal (RL) fracture propagation system are used. The strain energy release rate in mode I (G I) is uniquely determined from the load–displacement curve by means of the compliance-based beam method (CBBM). This method relies on the concept of equivalent elastic crack length (a eq) and therefore does not require the monitoring of crack propagation during test. DIC measurements are processed with two different purposes. Firstly, the physical evidence of a eq is discussed with regard to actual estimation of the crack length based on post-processing full-field displacement measurements. Secondly, the crack tip opening displacement in mode I (w I) is determined from the displacements near the initial crack tip. The cohesive law in mode I (σ I???w I) is then identified by numerical differentiation of the G I???w I relationship. The methodology and accuracy on this reconstruction are addressed. Moreover, the proposed procedure is validated by finite element analyses including cohesive zone modelling. It is concluded that the proposed data reduction scheme is adequate for assessing the cohesive law in pure mode I of P. pinaster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号