首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
关于广义等参有限单元的讨论   总被引:1,自引:1,他引:0  
马海涛  高伟 《计算力学学报》2010,27(6):1107-1110
研究了新近提出的广义等参单元,讨论了这一新方法与现有方法的关系,提出了一个建立广义有限单元的一般性方法。  相似文献   

2.
一种薄板弯曲问题的四边形位移单元   总被引:32,自引:0,他引:32  
本文基于修正势能泛函,引入广义协调的概念,导出了一种具有12个自由度的薄板弯曲四边形位移单元LGC—Q12,这种单元协调性好,列式简单,计算精度高。并且能近似地通过分片检验。  相似文献   

3.
In this paper, we firstly apply generalized difference methods to solve a fluid mixture model. The model is usually used to describe the tissue deformations and contains a nonlinear hyperbolic equation and an elliptic equation. Most people have used finite difference methods for solving the elliptic equation and other schemes for solving the hyperbolic equation. It is well known that the accuracy of traditional finite difference method is not high. This may be a serious disadvantage in the fluid mixture model, which describes cell movements and tissue deformations. The numerical methods we propose to improve accuracy are based on generalized Galerkin methods and dual decomposition. By choosing suitable trial function space and test function space, our generalized upwind difference schemes exhibit second‐order convergence in space for smooth problems and can eliminate numerical oscillations for discontinuous problems. Some numerical results are presented to demonstrate the advantages of our methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Multi-symplectic method for generalized Boussinesq equation   总被引:1,自引:0,他引:1  
The generalized Boussinesq equation that represents a group of important nonlinear equations possesses many interesting properties. Multi-symplectic formulations of the generalized Boussinesq equation in the Hamilton space are introduced in this paper. And then an implicit multi-symplectic scheme equivalent to the multi-symplectic Box scheme is constructed to solve the partial differential equations (PDEs) derived from the generalized Boussinesq equation. Finally, the numerical experiments on the soliton solutions of the generalized Boussinesq equation are reported. The results show that the multi-symplectic method is an efficient algorithm with excellent long-time numerical behaviors for nonlinear partial differential equations.  相似文献   

5.
The fractional calculus approach in the constitutive relationship model of viscoelastic fluid was introduced. The velocity and temperature fields of the vortex flow of a generalized second fluid with fractional derivative model were described by fractional partial differential equations. Exact analytical solutions of these differential equations were obtained by using the discrete Laplace transform of the sequential fractional derivatives and generalized Mittag-Leffier function. The influence of fractional coefficient on the decay of vortex velocity and diffusion of temperature was also analyzed.  相似文献   

6.
基于广义Hamilton系统微分方程解析解理论。给出了构造保持系统真解典则性的高阶显式积分格式的方法,并说明其可推广到广义Hamilton控制系统。该方法保持了原系统的几何定性特征,因而是稳定的。数值例子说明了算法的有效性。  相似文献   

7.
各向异性体内含任意孔洞对反平面波散射的边界元方法   总被引:3,自引:0,他引:3  
本文借助于广义格林公式导出了用位移表示的各向异性介质中SH波入射时的边界积分方程.根据本文作者在文献[8]给出的基本解,求解了各向异性介质中孔洞对SH波的散射问题.边界积分方程的离散基于常数元模式.文中给出了一个圆柱、一个椭圆柱和两个椭圆柱形式的孔洞周围的位移场和应力场的数值结果.最后,对入射波频率较高时的情形作了说明.  相似文献   

8.
The scattering problem of elastic wave by arbitrarily shaped cavities in an infinite anisotropic medium is investigated by the boundary integral equation (BIE) method. The formulations of BIE are derived with the help of generalized Green's formula. The discretization of BIE is based upon constant elements. After confirmation of the accuracy of the present method, some numerical examples are given for various cavities in a full space, in which an isotropic body with a circular cylinder hole is used for comparison and good agreement is observed. It has been proved that the method developed in this paper is effective.  相似文献   

9.
10.
广义节点有限元法   总被引:16,自引:5,他引:11  
应用流形方法思想,通过引入广义节点的概念,对传统有限元方法进行改进,建立了可具有任意高阶多项式托值函数的广义节点有限元方法,计算结果表明,广义节点有限元方法较之传统有限元方法有较高的精度。  相似文献   

11.
An exact solution is developed for the time periodic electroosmotic flow of a non-Newtonian fluid between the micro-parallel plates. The constitutive equations of a generalized Burgers fluid are used in the mathematical formulation. The resulting problem is solved by a Fourier transform technique. Graphs are plotted and discussed for various emerging parameters of interest.  相似文献   

12.
对于广义Hamilton系统及广义Hamilton控制系统,基于能量的Hamilton函数,用离散梯度方法给出了系统保持Hamilton函数特征的数值解法,证明了积分方法可有效地保持Hamilton函数随时间的变化率。通过算例说明了本文方法的有效性。  相似文献   

13.
The steady-state conjugated turbulent heat transfer with axial conduction in the wall and convection boundary conditions is solved with the generalized integral transform technique for the flow of Newtonian fluid in parallel-plate duct. A lumped wall model that neglects transverse temperature gradients in the solid but that takes into account the axial heat conduction along the wall is adopted. Highly accurate results are presented for the fluid bulk and wall temperatures and Nusselt number. The effects of the conjugation parameter, Biot number, and the dimensionless channel length on Nusselt number and fluid bulk and wall temperatures are systematically investigated.  相似文献   

14.
The appearance of spurious pressure modes in early shallow‐water (SW) models has resulted in two common strategies in the finite element (FE) community: using mixed primitive variable and generalized wave continuity equation (GWCE) formulations of the SW equations. One FE scheme in particular, the P ? P1 pair, combined with the primitive equations may be advantageously compared with the wave equation formulations and both schemes have similar data structures. Our focus here is on comparing these two approaches for a number of measures including stability, accuracy, efficiency, conservation properties, and consistency. The main part of the analysis centres on stability and accuracy results via Fourier‐based dispersion analyses in the context of the linear SW equations. The numerical solutions of test problems are found to be in good agreement with the analytical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A generalized hybrid method of non-conforming modes based on a non-linear generalized variational principles with relaxed interelement continuity requirements, is developed, and the plane quadrilateral geometrically non-linear element is presented, furthermore, non-linear refined element method is devised by orthogonal approach. It is shown that the refined element can improve the computational accuracy for non-conforming modes. The project supported by the National Natural Science Foundation of China  相似文献   

16.
Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.  相似文献   

17.
The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced. Exact analytical solutions are obtained for a class of unsteady flows for the generalized second grade fluid with the fractional derivative model between two parallel plates by using the Laplace transform and Fourier transform for fractional calculus. The unsteady flows are generated by the impulsive motion or periodic oscillation of one of the plates. In addition, the solutions of the shear stresses at the plates are also determined. The project supported by the National Natural Science Foundation of China (10372007, 10002003) and CNPC Innovation Fund  相似文献   

18.
A SYMPLECTIC ALGORITHM FOR DYNAMICS OF RIGID BODY   总被引:1,自引:0,他引:1  
For the dynamics of a rigid body with a fixed point based on the quaternion and the corresponding generalized momenta,a displacement-based symplectic integration scheme for differential-algebraic equations is proposed and applied to the Lagrange’s equa- tions based on dependent generalized momenta.Numerical experiments show that the algorithm possesses such characters as high precision and preserving system invariants. More importantly,the generalized momenta based Lagrange’s equations show unique ad- vantages over the traditional Lagrange’s equations in symplectic integrations.  相似文献   

19.
This study is concerned with a generalized shape optimization approach for finding the geometry of fluidic devices and obstacles immersed in flows. Our approach is based on a level set representation of the fluid–solid interface and a hydrodynamic lattice Boltzmann method to predict the flow field. We present an explicit level set method that does not involve the solution of the Hamilton–Jacobi equation and allows using standard nonlinear programming methods. In contrast to previous works, the boundary conditions along the fluid–structure interface are enforced by second‐order accurate interpolation schemes, overcoming shortcomings of flow penalization methods and Brinkman formulations frequently used in topology optimization. To ensure smooth boundaries and mesh‐independent results, we introduce a simple, computationally inexpensive filtering method to regularize the level set field. Furthermore, we define box constraints for the design variables that guarantee a continuous evolution of the boundaries. The features of the proposed method are studied by two numeric examples of two‐dimensional steady‐state flow problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A theoretical analysis, based on the search for a normal dissipation potential, is performed in order to generalize the empirical non-Darcy one-dimensional flow models to 3-D flows through anisotropic porous media. In an abstract framework, it is proven that a large number of heuristic non-linear equations governing the multidimensional flow through isotropic porous media can be derived starting from a potential strictly related to the mechanical power dissipated by the fluid. Such a formulation allows to define, for the tensor permeability case, a wide class of filtration models according to the Onsager's generalized theory of dissipative mechanical systems. A consistent generalization to anisotropic permeability case of polynomial flow models is proposed. Both primal and dual mixed variational formulations associated to the proposed quadratic and incomplete cubic flow models are introduced and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号