首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
提出了一种改进的圆锥优化算法,对传统圆锥优化算法的周期项进行了二次优化.首先,根据经典圆锥运动建立了二次优化的误差准则;其次,给出了推导二次优化补偿系数以及相应的残留误差的一般方法;最后,在不同的经典圆锥运动环境下对三例改进算法的姿态解算误差进行了仿真验证.结果表明,通过改进的四子样和五子样算法得到姿态解算精度与通过旋转矢量变化量的理想值得到的结果几乎完全一致.此外,由于比改进的五子样算法少一次叉乘和两次加法运算,而且仿真速度大约快14%,所以改进的四子样算法更值得推荐采用.  相似文献   

2.
经典圆锥算法的精度具有随着圆锥运动频率降低而提高的单调特性.在实际应用环境中,捷联惯导系统的运动可能主要处于某个固定的频率范围内,系统的圆锥误差主要由此频率范围内的角运动产生.基于经典圆锥算法设计公式,修改了算法误差设计原则,补充了两条不同的基于固定频率的算法优化原则,从而设计得到了一种新的优化的圆锥补偿算法.优化算法误差特性不再单调,而是在设定的频带内具有误差极小点,因此可有效提高捷联系统的姿态解算精度.优化算法不改变经典圆锥算法的结构形式,不增加算法实现难度.误差分析和姿态仿真表明,在经典圆锥运动下,优化算法能有效改善捷联系统在任意设定频率处的姿态解算精度一到两个量级.  相似文献   

3.
一种角速率输入的圆锥算法设计   总被引:1,自引:0,他引:1  
针对角速率输入的传统捷联惯导姿态算法在高动态环境下精度低的问题,提出一种角速率输入的在期望的圆锥运动环境下的频域最优圆锥误差补偿优化算法。在分析圆锥误差补偿通式的基础上,建立了角速率输入的圆锥误差准则,基于最小二乘原理建立了圆锥误差补偿优化目标,并推导了角速率输入的圆锥误差补偿优化系数,讨论了载体运动环境。在圆锥运动环境下,将新算法与传统的频域泰勒算法通过数字仿真进行了对比分析,结果表明,在高频圆锥运动环境下,新算法的精度明显高于频域泰勒算法。  相似文献   

4.
激光捷联系统中采用低通滤波器消除激光陀螺角增量输出中机械抖动引入的干扰信号,同时也对陀螺敏感的外界惯性输入角速度信号进行了频率整形,产生了视在圆锥误差,此时传统圆锥补偿算法未考虑滤波器影响补偿精度严重降低.针对本系统采用了31阶低通滤波器对陀螺的角增量输出整形,分析了其引入的视在圆锥误差,基于滤波器的频率特性,采用五子样圆锥误差补偿算法,即在旋转矢量更新周期内有五个陀螺采样信号,可以构成四种不同时间间隔的陀螺输出角增量信号的叉积,利用这些叉积的线性组合更新旋转矢量.仿真结果表明,对经过滤波器整形的陀螺输出角增量进行补偿,优化的圆锥补偿算法的补偿精度明显优于传统圆锥补偿算法,使系统姿态角的精度提高了两个数量级.  相似文献   

5.
圆锥误差和量化误差是激光捷联惯性导航系统姿态解算误差的两个最主要的误差源.从分析圆锥误差产生的机理出发,分别分析了以角度和角速度为计算参数的圆锥误差补偿算法,并对量化误差对圆锥误差补偿算法的影响进行了研究.通过理论分析和数字仿真,得出在实际工程应用中,采用角速度为输入信息的激光捷联惯性导航系统姿态算法应该在考虑量化误差的情况下,采用以角速度为计算参数的圆锥误差补偿算法.  相似文献   

6.
捷联惯性导航系统的姿态算法优化设计   总被引:6,自引:1,他引:5  
在圆锥运动条件下,具有相同时间间隔的两个角增量的叉乘对圆锥补偿的贡献相等.本文根据这一特点,设计了一种捷联惯导系统姿态算法,在圆锥补偿获得相同精度的情况下,它的计算量较少.同时,利用此特点,推导出利用前一圆锥补偿周期的角增量进行圆锥补偿的算法,提高了补偿精度.本文给出了仿真实验结果.本文为研制激光陀螺捷联惯导系统提供了一种高精度算法.  相似文献   

7.
捷联惯导系统算法比较研究   总被引:8,自引:0,他引:8  
运用四子样圆锥补偿现代捷联惯导系统姿态算法、针对船舶的摇摆运动在数字信号处理芯片(DSPs)上进行了仿真,并与三子样圆锥补偿算法,三子样等效转动矢量法和单子样毕卡逼近法的仿真,并与三子样圆锥补偿算法、三子样等效转动矢量法和单子样毕卡逼近法的仿真结果进行了比较。结果表明:四子样圆锥补偿能更有效地抑制不可交换误差,提高姿态精度,且整个导航算法在TMS320C6211 EVM仿真器上运行,所花时间为5.3毫秒。  相似文献   

8.
提出基于一种新的圆锥补偿结构的捷联惯导姿态算法。与传统的姿态算法不同,新算法中同时引入了角速率和角增量用于圆锥补偿(适用于角速率输入或角速率和角增量同时输入)。基于所提出的圆锥误差补偿结构,引入时间泰勒方法进行圆锥误差补偿优化设计,并定义了两种性能评价模型,以分别用于一般圆锥和机动环境下的姿态算法性能评估。将新的姿态算法与传统角增量输入的姿态算法通过仿真进行了对比分析,结果表明,在相同的采样频率和姿态更新周期以及相同的圆锥和机动环境的条件下,新的五子样姿态算法的性能明显优于传统角增量输入的五子样姿态算法。  相似文献   

9.
考虑机抖激光陀螺信号滤波特性的圆锥算法修正   总被引:2,自引:4,他引:2  
捷联惯导系统一般用圆锥算法来补偿其圆锥运动漂移,标准的圆锥算法是以理想的陀螺信号为输入设计的,而机抖激光陀螺常用数字低通滤波器来滤除抖动偏频信号,由于滤波器的非理想性,滤波后信号的幅频特性发生畸变,引入了较大的圆锥算法误差。参考标准圆锥算法误差公式,用相对圆锥误差分析方法比较研究了算法的误差变化特性,证明误差大小与滤波器通带特性有关。基于经典圆锥运动,推导了数据滤波后修正的圆锥算法公式。修正算法考虑了滤波器幅频特性的影响,补偿了滤波器引入的圆锥算法误差。仿真表明:修正算法在保证滤波器较小延时的同时,能明显减小算法精度损失,提高姿态算法整体精度水平。  相似文献   

10.
基于高阶补偿模型的新圆锥算法   总被引:2,自引:0,他引:2  
分析表明传统圆锥算法的误差由常值漂移误差和截断误差组成。通常截断误差大于漂移误差,是误差的主项应优先补偿。而传统圆锥算法一般通过增加单次更新周期内的子样数来提高算法精度,但子样数的增加只能减少漂移误差,对截断误差并没有改善作用。从Bortz的旋转矢量微分方程出发,在不增加采样数的前提下,通过高阶误差补偿模型,对圆锥运动产生的截断误差进行了有效的补偿,提高了算法精度。从理论上比较了该算法和传统3子样圆锥算法、4子样圆锥算法的误差,证明算法精度一般优于传统3子样圆锥算法和4子样圆锥算法。通过仿真证明了上述结论的正确性。虽然新算法增加了一定的计算量,但随着导航计算机性能的不断提高,实测的结果表明仍能满足实时性的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号