首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
颗粒形状对粗粒土的物理力学特性有着显著的影响。离散元法广泛应用于粗粒土宏观物理力学特性的细观机理研究。为了考虑颗粒形状的影响,亟待发展计算高效的离散元非球趋真颗粒模型。本文基于X射线CT扫描技术并结合数字图像处理技术,对光滑和棱角性两类典型粗粒土(鹅卵石与碎石)进行三维重构,并提出了两类趋真颗粒模型,分别采用扩展超椭球模型和球多面体模型进行趋真逼近;开展了两类颗粒试样的3D打印和单轴压缩试验,分析了配位数和局部孔隙率分布等细观特性;基于离散元开源程序SudoDEM开展了两类试样的离散元模拟,并将模拟细观分析结果与物理试验进行了对比。结果表明,提出的两类趋真颗粒模型能够较好地对粗粒土颗粒进行离散元建模。  相似文献   

2.
试验发现,以球形TNT为中心爆源,球形玻璃珠构成的颗粒和球壳中发生破碎的颗粒体积分数随当量比(颗粒球壳的质量与TNT炸药的质量比)的增加呈现指数衰减规律。采用有限元与离散元耦合的连续非连续数值方法,揭示了中心炸药起爆后颗粒环壳内爆炸波的传播衰减和在环壳外界面反射后的稀疏卸载过程。由于爆炸波的短脉冲特性,颗粒内部应力场始终处于应力非均衡状态,采用应力均衡状态下颗粒破碎强度的Weibull分布会得到远高于试验测得的破碎颗粒体积分数。因此采用破坏波传播特征时间内的平均诱导应力而非瞬时诱导应力作为颗粒破碎强度的应力指标,并通过试验结果确定破坏波传播特征时间。考虑了应力传播的非均匀性对于颗粒破碎的影响,得到了平均诱导应力峰值的概率分布随比例距离的变化规律,结合修正后的颗粒破碎强度Weibull分布建立了破碎颗粒体积分数随比例距离的变化模型。  相似文献   

3.
Detailed measurements in a developed particle-laden horizontal channel flow (length 6 m, height 35 mm, the length is about 170 channel heights) are presented using phase-Doppler anemometry for simultaneous determination of air and particle velocity. The particles were spherical glass beads with mean diameters in the range of 60 µm-1 mm. The conveying velocity could be varied between about 10 m/s and 25 m/s, and the particle mass loading could reach values of about 2 (the mass loading is defined as the ratio of particle to gas phase mass flow rates), depending on particle size. For the first time, the degree of wall roughness could be modified by exchanging the wall plates. The influence of these parameters and the effect of inter-particle collisions on the profiles of particle mean and fluctuating velocities and the normalised concentration in the developed flow were examined. It was shown that wall roughness decreases the particle mean velocity and enhances fluctuating velocities due to irregular wall bouncing and an increase in wall collision frequency, i.e. reduction in mean free path. Thereby, the larger particles are mainly more uniformly distributed across the channel, and gravitational settling is reduced. Both components of the particle velocity fluctuation were reduced with increasing mass loading due to inter-particle collisions and the momentum loss involved. Moreover, the effect of the particles on the air flow and the turbulent fluctuations was studied on the basis of profiles in the developed flow and turbulence spectra determined for the streamwise velocity component. In addition to the effect of particle size and mass loading on turbulence modulation, the influence of wall roughness was analysed. It was clearly shown that increasing wall roughness also results in a stronger turbulence dissipation due to two-way coupling.  相似文献   

4.
Fully resolved numerical simulations of a micron-sized spherical particle residing on a surface with large-scale roughness are performed by using the Lattice–Boltzmann method. The aim is to investigate the influence of surface roughness on the detachment of fine drug particles from larger carrier particles for transporting fine drug particles in a DPI (dry powder inhaler). Often the carrier surface is modified by mechanical treatments for modifying the surface roughness in order to reduce the adhesion force of drug particles. Therefore, drug particle removal from the carrier surface is equivalent to the detachment of a sphere from a rough plane surface. Here a sphere with a diameter of 5 μm at a particle Reynolds number of 1.0, 3.5 and 10 are considered. The surface roughness is described as regularly spaced semi-cylindrical asperities (with the axes oriented normal to the flow direction) on a smooth surface. The influence of asperity distance and size ratio (i.e. the radius of the semi-cylinder to the particle radius, Rc/Rd) on particle adhesion and detachment are studied. The asperity distance is varied in the range 1.2 < L/Rd < 2 and the semi-cylinder radius between 0.5 < Rc/Rd < 0.75. The required particle resolution and domain size are appropriately selected based on numerical studies, and a parametric analysis is performed to investigate the relationship between the contact distance (i.e. half the distance between the particle contact points on two neighbouring semi-cylinders), the asperity distance, the size ratio, and the height of the particle centroid from the plane wall. The drag, lift and torque acting on the spherical particle are measured for different particle Reynolds numbers, asperity distances and sizes or diameters. The detachment of particles from rough surfaces can occur through lift-off, sliding and rolling, and the corresponding detachment models are constructed for the case of rough surfaces. These studies will be the basis for developing Lagrangian detachment models that eventually should allow the optimisation of dry powder inhaler performance through computational fluid dynamics.  相似文献   

5.
基于考察泥沙运动的细观行为特征,采用离散单元法(DEM)模拟泥沙颗粒运动,结合带自由表面的水动力学计算模型,建立了CFD-DEM耦合数值模型。计算程序开发基于Fortran语言来实现。耦合模型中实现了硬球模型和软球模型两种颗粒碰撞模型,应用范围较广。作为自由表面水流与泥沙颗粒流数值模型的初步研究,在模型建立的基础上,对模型做了基本的验证。分别通过单颗粒静水沉降和混合颗粒群分选两个计算工况,验证了模型的正确性及模拟精度。该耦合模型可进一步丰富带自由表面水流条件下泥沙运动的研究手段。  相似文献   

6.
Screw conveyors are extensively used in modern industry such as metallurgy, architecture and pharmaceutical due to their high-efficiency in the transportation of granular materials. And substantial efforts have been devoted to the study of the screw conveyors. Numerical method is an effective way to study screw conveyor. However, previous studies have mainly focused in the regime of spherical particles while the in-depth investigations for non-spherical particles that should be the most encountered in practical applications are still limited. In view of the above situations, discrete element method (DEM), which has been widely accepted in simulating the discrete systems, is utilized to investigate the conveying process of non-spherical particles in a horizontal screw conveyor, with particles being modeled by super-ellipsoids. In addition, a wear model called SIEM (Shear Impact Energy Model) is incorporated into DEM to predict the wear of screw conveyor. The DEM simulation results demonstrate that the particle shape is influential for the flow behaviors of particles and the wear of conveyor. The conveying performance evaluated quantitatively of both mass flow rate and power consumption is subsequently obtained to investigate the effect of sphericity of particle with different operation parameters. Moreover, particle collision frequency and collision energy consumption are acquired to investigate the possible particle breakage between particles and screw blade. The comparisons between particle–particle collision and particle–wall collision reveal that particles with large shape index have more possibility to be damaged in particle–wall impingement.  相似文献   

7.
The discrete element method (DEM) is a promising approach to model blade-granular material interactions. The accuracy of DEM models depends on the model parameters. In this study, a calibration process was developed to determine the parameter values. The particle size was the same as the real material and the particle shape was modelled using two spherical particles rigidly clumped together to form a single grain. Laboratory shear tests and compressions tests were used to determine the material internal friction angle and stiffness, respectively. These tests were replicated numerically using DEM models with different sets of particle friction coefficients and particle stiffness values. The shear test results are found to be dependent on both the particle friction coefficient and the particle stiffness. The compression test results show that it is only dependent on the particle stiffness. The combination of shear test and compression test results can be used to determine a unique set of particle friction and particle stiffness values. The calibration process was validated experimentally and numerically by modelling a blade moving through granular material. Results show that the forces acting on the blade can be accurately modelled with DEM and the maximum error is found to be 26%. The relative particle-blade displacements were used to predict the position and shape of the shear lines in front of the blade. A good qualitative correlation was achieved between the experiments and the DEM simulations.  相似文献   

8.
During twin screw granulation (TSG), small particles, which generally have irregular shapes, agglomerate together to form larger granules with improved properties. However, how particle shape impacts the conveying characteristics during TSG is not explored nor well understood. In this study, a graphic processor units (GPUs) enhanced discrete element method (DEM) is adopted to examine the effect of particle shape on the conveying characteristics in a full scale twin screw granulator for the first time. It is found that TSG with spherical particles has the smallest particle retention number, mean residence time, and power consumption; while for TSG with hexagonal prism (Hexp) shaped particles the largest particle retention number is obtained, and TSG with cubic particles requires the highest power consumption. Furthermore, spherical particles exhibit a flow pattern closer to an ideal plug flow, while cubic particles present a flow pattern approaching a perfect mixing. It is demonstrated that the GPU-enhanced DEM is capable of simulating the complex TSG process in a full-scale twin screw granulator with non-spherical particles.  相似文献   

9.
Despite advancements in computational resources, the discrete element method (DEM) still requires considerable computational time to solve detailed problems, especially when it comes to the large-scale models. In addition to the geometry scale of the problem, the particle shape has a dramatic effect on the computational cost of DEM. Therefore, many studies have been performed with simplified spherical particles or clumps. Particle scaling is an approach to increase the particle size to reduce the number of particles in the DEM. Although several particle scaling methods have been introduced, there are still some disagreements regarding their applicability to certain aspects of problems. In this study, the effect of particle scalping on the shear behavior of granular material is explored. Real granular particles were scanned and imported as polygonal particles in the direct shear test. The effect of particle size distribution, particle angularity, and the amount of scalping were investigated. The results show that particle scalping can simulate the correct shear behavior of the model with significant improvement in computational time. Also, the accuracy of the scalping method depends on the particle angularity and particle size range.  相似文献   

10.
11.
Numerical studies on the number of particles or system size required to attain a representative element volume (REV) for discrete element method (DEM) simulations of granular materials have almost always considered samples with spherical or circular particles. This study considers how many particles are needed to attain a REV for 2D samples of 2-disc cluster particles where the particle aspect ratio (AR) was systematically varied. Dense and loose assemblies of particles were simulated. The minimum REV was assessed both by considering the repeatability of static packing characteristics and the shearing behaviour in biaxial compression tests, and by investigating the effect of sample size on the measured characteristics and observed shearing behaviour. The repeatability of the data considered generally improved with increasing sample size. The packing characteristics of the dense samples were more repeatable suggesting that the minimum REV reduces with increasing packing density. The minimum REV was observed to be sensitive to the characteristic measured. Although the overall responses of the samples during shear deformation were similar irrespective of the sample sizes, the smaller the sample size, the higher the fluctuations observed in the responses. Analysis of the coefficient of variation of the fluctuations around the critical state stress ratio can provide insight as to whether a REV is attained. The particle AR influences the effect of sample size on shearing characteristics and thus the minimum number of particles required to attain a REV; this can be explained by the influence of AR on the number of contacts within the samples.  相似文献   

12.
This paper describes a complete framework to predict the behaviour of interacting non-spherical particles with large Stokes numbers in a turbulent flow. A summary of the rigid body dynamics of particles and particle collisions is presented in the framework of Quaternions. A particle-rough wall interaction model to describe the collisions between non-spherical particles and a rough wall is put forward as well. The framework is coupled with a DNS-LES approach to simulate the behaviour of horizontal turbulent channel flow with 5 differently shaped particles: a sphere, two types of ellipsoids, a disc, and a fibre. The drag and lift forces and the torque on the particles are computed from correlations which are derived using true DNS.The simulation results show that non-spherical particles tend to locally maximise the drag force, by aligning their longest axis perpendicular to the local flow direction. This phenomenon is further explained by performing resolved direct numerical simulations of an ellipsoid in a flow. These simulations show that the high pressure region on the acute sides of a non-spherical particle result in a torque if an axis of the non-spherical particle is not aligned with the flow. This torque is only zero if the axis of the particle is perpendicular to the local direction of the flow. Moreover, the particle is most stable when the longest axis is aligned perpendicular to the flow.The alignment of the longest axis of a non-spherical particle perpendicular to the local flow leads to non-spherical particles having a larger average velocity compared to spherical particles with the same equivalent diameter. It is also shown that disc-shaped particles flow in a more steady trajectory compared to elongated particles, such as elongated ellipsoids and fibres. This is related to the magnitude of the pressure gradient on the acute side of the non-spherical particles. Finally, it is shown that the effect of wall roughness affects non-spherical particles differently than spherical particles. Particularly, a collision of a non-spherical particle with a rough wall induces a significant amount of rotational energy, whereas a corresponding collision with a spherical particle results in mostly a change in translational motion.  相似文献   

13.
The Discrete Element Method (DEM) is applied to predict draft forces of a simple implement in cohesionless granular material. Results are compared with small-scale laboratory tests in which the horizontal force is measured at a straight blade. This study is focused on the case of cohesionless material under quasi-static conditions.The DEM requires the calibration of the local contact parameters between particles to adjust the bulk material properties. The most important bulk property is the angle of internal friction ?. In the DEM, the shear resistance is limited in the case of spherical particles due to excessive particle rotations. This is cured by retaining rotations of the particles. Although this is known to prevent the material from developing shear bands, the model still turns out to be capable of predicting the reaction force on the blade.In contrast to empirical formulas for this kind of application, the DEM model can easily be extended to more complex tool geometries and trajectories. This study helps to find a simple and numerically efficient setup for the numerical model, capable of predicting draft forces correctly and so allowing for large-scale industrial simulations.  相似文献   

14.
考虑块石形状为球体、正方体和长方体三种情况,通过正方体与球体相比较来探究块石不同棱角度对胶结土石混合体力学特性的影响,通过长方体与正方体相比较来探究块石不同球度对胶结土石混合体力学特性的影响。首先,基于不规则颗粒三维离散元精细模拟技术实现了正方体和长方体块石数值模型的建立;然后建立含石量为30%和80%的块石形状分别为球体、正方体和长方体的胶结土石混合体三维离散元随机结构模型;最后,对土石混合体大三轴试验进行颗粒流数值模拟,获得了不同含石量、不同块石形状下胶结土石混合体的强度特征和变形特征,并分别就低、高两种含石量下块石形状对土石混合体力学特性影响的细观机理进行了深入地分析。结果表明:块石含量和形状均会显著影响胶结土石混合体的力学特性,并且两者间具有复杂的交互作用;微裂纹、块石颗粒平均旋转量、应变能和摩擦功等的演化规律能够很好地从细观水平上反映块石形状影响的作用机理。  相似文献   

15.
基于球形颗粒几何排列的离散元试样高效生成方法   总被引:1,自引:0,他引:1  
李勇俊  季顺迎 《应用力学学报》2020,(2):469-476,I0001
在球体离散元数值模拟中,颗粒的初始排列状态是影响计算效率和计算结果的重要环节。本文采用前进面几何构造算法,提出了一种基于网格搜索的球形颗粒随机排列高效算法。通过求解空间三边方程,满足了粒径设置的任意大小的颗粒依次置入前进面的外侧,并与构成前进面的三个颗粒相互接触。为获得高体积分数的颗粒簇,该算法允许颗粒改变其粒径大小。采用颗粒网格化方法可以简化前进面的搜索,并由此提高排列效率。通过计算平均配位数、体积分数和二阶结构张量的特征值,对不同粒径比下得到的立方体试样进行了分析,得到试样配位数及体积分数均随着粒径比的增大而增大,且得到的试样为各向同性。此外,空间网格的大小和初始颗粒的生成点对随机排列的效率均会产生显著的影响。最后,对非规则铁路道砟进行了精细构造及压碎模拟,发现DEM模拟得到的应力-应变曲线与试验结果基本吻合,验证了该算法得到的颗粒试样在模拟道砟裂纹起裂、扩展等过程的有效性。  相似文献   

16.
蔡荣  余家欣  王超 《摩擦学学报》2020,40(5):559-568
为获得高质量纯铅表面,采用化学机械抛光(CMP)的方法并辅以自制抛光液,研究了胶体二氧化硅抛光颗粒的形状、粒径和浓度、加载压力、抛光头与抛光盘转向和转速、抛光液流量等工艺参数对铅片表面材料去除率和粗糙度的影响. 研究表明:小粒径异形(眉形)胶体二氧化硅抛光颗粒相较于大粒径球形颗粒更有利于铅片抛光,抛光颗粒的粒径和浓度对纯铅抛光性能的影响主要取决于铅片表面与胶体二氧化硅颗粒以及抛光垫表面丝绒的耦合作用关系. 随着加载压力、抛光头与抛光盘转向和转速、抛光液流量的改变,铅片表面和抛光垫之间驻留的层间抛光液的厚度以及状态发生改变,从而直接影响抛光液的流动性、润滑性和分散性,以及影响抛光颗粒和化学试剂与铅片表面的机械化学作用,进而影响抛光质量和材料去除率. 通过对工艺参数影响的研究和对工艺参数的优化,最终获得了表面粗糙度Ra为1.5 nm的较为理想的超光滑纯铅表面,同时材料去除率能够达到适中的380 ?/min.   相似文献   

17.
In industrial blast furnaces (BFs), the investigations involving the flow behaviors of particles and the resultant burden structure are essential to optimize its operation stability and energy consumption. With the advance of computing capability and mathematical model, the discrete element method (DEM) specialized in characterizing particle behavior has manifested its power in the investigation of BFs. In the framework of DEM, many particle models have been developed, but which model is more suitable for simulating the particle behaviors of BFs remains a question because real particles in BFs have large shape and size dispersity. Among these particle models, the super-ellipsoid model possesses the ability to change shape flexibly. Therefore, the focus of this study is to investigate whether the super-ellipsoid model can meet the requirement of authenticity and accuracy in simulating the behaviors of particles with large shape and size dispersity. To answer this question, a simplified BF charging system composed of a hopper and a storage bin is established. The charging process and the final packing structure are analyzed and compared between experiments and simulations with different shape indexes. The results show that super-ellipsoid particles have prominent advantages over spherical particles in terms of representing the real BF particles, and it can more reasonably reproduce the flow behaviors and packing structure of experimental particles. The computation cost of super-ellipsoid particles is also acceptable for engineering applications. Finally, the micro-scale characteristics of packing structure is analyzed and the single-ring charging process in industry-scale BF using super-ellipsoid particles is conducted.  相似文献   

18.
In this study, a bionic foot with sand fixation and fluidization limitation functions was designed. Also a rectangular foot with the same sizes, named the common foot, was designed for comparison. Three kinds of quartz sands were selected to study how particle size, shape and compactness affected the intrusion performances of mechanical feet. The intrusion resistive forces and pressures of the bionic foot on these three kinds of quartz sands were all smaller compared with the common foot. Discrete element simulations showed particle disturbance areas were smaller and particle motion trends were more consistent under the bionic foot versus the common foot. The intrusion resistive forces of these two kinds of mechanical feet firstly increased and then decreased with the increasing particle sizes of quartz sands. Moreover, the intrusion resistive force on spherical particles was less than that of irregular particles for both the bionic foot and the common foot. The corresponding resistive forces of mechanical feet were characterized based on quartz sand compactness. The classic pressure-sinkage model was modified based on the intrusion tests, and the relationships between intrusion resistive force and mechanical foot depth were obtained.  相似文献   

19.
The silo discharge of non-spherical particles has been widely practiced in engineering processes, yet the understanding of multi-level mechanisms during solid transportation is still lacking. In this study, a high-fidelity super-ellipsoid Discrete Element Method (DEM) model is established to investigate the discharge behaviors of non-spherical particles with different size distributions. After the comprehensive model validations, we investigated the effects of particle shape (aspect ratio and particle sharpness) on the particle level discharge behaviors. The discharge rates of the ellipsoid particles used in the current work are larger than the spherical particles due to the larger solid fraction. The discharge rates of the cuboid-like particles are determined by the combined effect of the solid fraction and the contact force. Parcel level data show that the translational movements of the ellipsoid particles are more ordered, which is supported by the global level data. Strong correlations exist between the particle level and parcel level data, especially the ellipsoid particles and the large particles in the polydispersed cases.  相似文献   

20.
Three dimensionally coupled computational fluid dynamics (CFD) and discrete element method (DEM) were used to investigate the flow of corn-shaped particles in a cylindrical spouted bed with a conical base. The particle motion was modeled by the DEM, and the gas motion by the k-? two-equation turbulent model. A two-way coupling numerical iterative scheme was used to incorporate the effects of gas–particle interactions in terms of momentum exchange. The corn-shaped particles were constructed by a multi-sphere method. Drag force, contact force, Saffman lift force, Magnus lift force, and gravitational force acting on each individual particle were considered in establishing the mathematical modeling. Calculations were carried out in a cylindrical spouted bed with an inside diameter of 200 mm, a height of 700 mm, and a conical base of 60°. Comparison of simulations with experiments showed the availability of the multi-sphere method in simulating spouting action with corn-shaped particles, but it depended strongly on the number and the arrangement of the spherical elements. Gas–solid flow patterns, pressure drop, particle velocity and particle concentration at various spouting gas velocity were discussed. The results showed that particle velocity reaches a maximum at the axis and then decreases gradually along the radial direction in the whole bed. Particle concentration increases along the radial direction in the spout region but decreases in the fountain region, while it is nearly constant in the annulus region. Increasing spouting gas velocity leads to larger pressure drop, remarkably increased speed of particle moving upward or downward, but decreased particle concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号