首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The effect of a concentrated external disturbance on the boundary layer of a plate was investigated in the framework of the reaction of boundary layers to external disturbances. A disturbance localized above the surface of the plate was introduced into the external flow. Measurements revealed the generation of Tollmien—Schlichting waves in the boundary layer; in conjunction with the results of the earlier studies [1, 2], this shows that a concentrated external disturbance is an effective means of generating characteristic oscillations in a boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 155–159, July–August, 1980.  相似文献   

2.
The wave structure of the artificial disturbances generated by an external acoustic field in a supersonic boundary layer is investigated. The disturbances are classified with respect to phase velocity. Disturbances whose phase velocity in the direction of flow is greater than unity and waves located at the boundary of the discrete and continuous spectra are detected.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 82–86, May–June, 1989.  相似文献   

3.
This paper reports results of experiments on controlling longitudinal structures in the boundary layer on a at plate. The longitudinal structures were generated by a controlled vortical disturbance of the external flow by means of a distributed susceptibility mechanism. It is shown that riblets reduce the intensity of both stationary and traveling disturbances. The linear and weakly linear stages in the development of disturbances in the boundary layer are the most favorable for the use of riblets.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 4, pp. 47–54, July–August, 2005.  相似文献   

4.
A. I. Ruban 《Fluid Dynamics》1990,25(2):213-221
The development of wave packets excited in a boundary layer by means of a local deformation of the surface in the longitudinal-transverse interaction regime is considered. A solution of the linearized system of equations of interaction theory is constructed using a Laplace transformation with respect to time and a Fourier transformation with respect to the space variables. Two problems are separately examined. In the first, the disturbances are induced by a surface deformation sinusoidal in the transverse direction. It is shown that the center of the wave packet with the greatest oscillation amplitude moves in a direction opposite to that of the flow in the boundary layer. At the same time the wave packet expands, so that in the course of time any fixed point will enter the region of growing oscillations. In the second problem the source of the disturbances is isolated. In this case the wave packet acquires a horseshoe shape. Expanding, it carries the disturbances away from the source in all directions, including upstream relative to the flow in the boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 59–68, March–April, 1990.  相似文献   

5.
The results of an experimental investigation of the three-dimensional stability of a boundary layer with a pressure gradient are presented. A low-turbulence subsonic wind tunnel was employed. The development of a three-dimensional wave packet of oscillations harmonic in time in the boundary layer on a model wing is studied. The amplitudephase distributions of the pulsations in the wave packet are subjected to a Fourier analysis. Spectral (with respect to the wave numbers) decomposition of the oscillations enables the flow stability with respect to plane waves with different directions of propagation to be examined. The results are compared with the corresponding data obtained in flat plate experiments. The effect of the pressure gradient on the development of the three-dimensional spectral components of the disturbances and the dispersion properties of the flow is analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 85–91, May–June, 1988.  相似文献   

6.
Effect of acoustic oscillations on the stability of a plane jet   总被引:1,自引:0,他引:1  
The problem of the effect of acoustic oscillations on the stability of a compressible ideal-fluid jet flow is examined in the case of a plane jet with standing acoustic waves superimposed across it. The method of dividing the motion into fast and slow with allowance for nonlinear acoustic effects is employed. The acoustic oscillations are found to affect the growth rate of unstable hydrodynamic disturbances.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 54–60, July–August, 1991.  相似文献   

7.
A regime diagram of the development of slow near-wall disturbances induced by an unsteady self-induced pressure perturbation in a hypersonic boundary layer is constructed for a disturbance wavelength greater than the boundary layer thickness. It is shown that the main factors shaping the perturbed flow are the gas enthalpy near the body surface, the intensity of the viscous-inviscid interaction, and the nature (sub- or supersonic) of the main part of the boundary layer. Nonlinear boundary-value problems are formulated for regimes in which the near-wall boundary layer region plays a decisive role. Numerical and analytical solutions are obtained in the linear approximation. It is shown that intensification of the viscous-inviscid interaction or an increase in the role of the supersonic main region of the boundary layer impart generally supersonic properties to the main part of the boundary layer, i.e. the upstream propagation of the disturbances is damped and the disturbance growth downstream becomes more intense. Damping of the viscous-inviscid interaction and an increase in the role of the subsonic main part of the boundary layer have the opposite effect. Surface cooling increases the effect of the main part of the boundary layer on the formation of pressure disturbances and surface heating leads to an increase in the effect of the near-wall boundary layer region. It is also shown that for the regimes considered disturbances propagate in a direction opposite to that of the free stream from the turbulent flow region located downstream of the local disturbance development region.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 59–71. Original Russian Text Copyright © 2004 by Bogolepov and Neiland.  相似文献   

8.
The possibility of controlling the laminar-turbulent transition in hypersonic shock layers by means of porous coatings is considered. The linear stability of the shock layer to acoustic disturbances is analyzed. A dispersion relation is derived in an analytical form and analyzed for different characteristic values of porosity of the wall, which allows one to study the spectrum of acoustic disturbances in the shock layer. Analytical expressions for the growth rate of instability of acoustic disturbances are presented as functions of the reflection factor. Their structure indicates that the porous coating effectively decreases acoustic instability of the shock layer.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 44–54, January–February, 2005.  相似文献   

9.
Under small external perturbations, the initial stage of the laminar into turbulent flow transition process in boundary layers is the development of natural oscillations, Tolman-Schlichting waves, which are described by the linear theory of hydrodynamic stability. Subsequent nonlinear processes start to appear in a sufficiently narrow band of relative values of the perturbation amplitudes (1–2% of the external flow velocity) and progress quite stormily. Hence, the initial linear stage of relatively slow development of perturbations is governing, in a known sense, in the complete transition process. In particular, the location of the transition point depends, to a large extent, on the spectrum composition and intensity of the perturbations in the boundary layer, which start to develop according to linear theory laws, resulting in the long run in destruction of the laminar flow mode. In its turn, the initial intensity and spectrum composition of the Tolman-Schlichting waves evidently depend on the corresponding characteristics of the different external perturbations generating these waves. The significant discrepancy in the data of different authors on the transition Reynolds number in the boundary layer on a flat plate [1–4] is probably explained by the difference in the composition of the small perturbing factors (which have not, unfortunately, been fully checked out by far). Moreover, it is impossible to expect that all kinds of external perturbations will be transformed identically into the natural boundary-layer oscillations. The relative role of external perturbations of different nature is apparently not identical in the Tolman-Schlichting wave generation process. However, how the boundary layer reacts to small external perturbations, under what conditions and in what way do external perturbations excite Tolman-Schlichting waves in the boundary layer have practically not been investigated. The importance of these questions in the solution of the problem of the passage to turbulence and in practical applications has been emphasized repeatedly recently [5, 6], Only the first steps towards their solution have been taken at this time [4, 7–10], Out of all the small perturbing factors under the real conditions of the majority of experiments to investigate the flow stability and transition in the case of smooth polished walls, three are apparently most essential, viz.: the turbulence of the external flow, acoustic perturbations, and model vibrations. In principle, all possible mechanisms for converting the energy of these perturbations into Tolman-Schlichting waves can be subdivided into two classes (excluding the nonlinear interactions which are not examined here): 1) distributed wave generation in the boundary layer; and 2) localized wave generation at the leading edge of the streamlined model. Among the first class is both the possibility of the direct transformation of the external flow perturbations into Tolman-Schlichting waves through the boundary-layer boundary, and wave excitation because of the active vibrations of the model wall. Among the second class are all possible mechanisms for the conversion of acoustic or vortical perturbations, as well as the vibrations of the streamlined surface, into Tolman-Schlichting waves, which occurs in the area of the model leading edge.Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 5, pp. 85–94, September–October, 1978.  相似文献   

10.
The development of disturbances of the laminar flow in the separation zone behind a surface projection in the boundary layer on a flat plate has been experimentally investigated. The linear instability characteristics of the separated flow are determined and the interaction between the oscillations growing in the separation zone and the average flow is studied.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 16–22, January–February, 1990.  相似文献   

11.
Experimental determinations were made of the width of the mixing layer and the level of turbulent pulsations in the initial section of a subsonic circular immersed jet for different parameters of the boundary layer on the nozzle walls and in the presence of acoustic excitation. It was established that the rate of expansion of the turbulent mixing layer depends on the flow regime in the boundary layer. For laminar initial boundary layer, external acoustic excitation can lead to a decrease in the expansion velocity of the mixing layer and of the intensity of the velocity pulsations on the jet axis within the initial section. If the frequency and amplitude of acoustic excitation at which a decrease in the rate of expansion of the mixing layer and of the pulsation intensity was observed remained unchanged, the influence of the acoustics disappeared when the boundary layer became turbulent. The acoustic vibrations influenced the subsonic jets by generating vortex perturbations when they interact with the edge of the nozzle.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 36–42, November–December, 1982.We are grateful to K. I. Artamonov, now deceased, for support and discussing the results, and O. I. Navoznov and S. F. Agafonov for help in organizing and performing the experiments.  相似文献   

12.
This work proposes a method of inducing artificial disturbances of adjustable amplitude in a supersonic boundary layer. Using the proposed method, an experimental study is made of the development of a three-dimensional wave packet of low intensity at a frequency of 20 kHz in the boundary layer of a flat plate at Mach number M = 2.0. The Fourier components of the wave packet are determined. The data obtained are compared with the results of calculating the linear stability of the supersonic boundary layer in a plane-parallel flow approximation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 37–43, September–October, 1984.  相似文献   

13.
The structure of disturbances carried by the flow into the working section of a supersonic wind tunnel has been investigated by means of a constant-current hot-wire anemometer. In order to generate the disturbances grids consisting of round rods were introduced upstream from the nozzle throat. It was found that in the working section the disturbances consist of non-correlating vortex, entropy and acoustic modes. The latter is generated by the boundary layer on the nozzle walls and the first two by the grids. The spectral compositions of the various modes are compared. Because of the presence of grid turbulence the point of laminar-turbulent transition in the boundary layer on a flat plate varied widely.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 119–124, May–June, 1990.  相似文献   

14.
The results of an experimental investigation of boundary layer stability in a gradient flow with a high degree of free-stream turbulence are presented. The question of the possible artificial generation, the further development and the effect on laminar-turbulent transition of instability waves (Tollmien-Schlichting waves) in the boundary layer on a wing profile is considered for a level of free-stream turbulence =1.75% of the free-stream velocity; the sensitivity of the flow to the disturbances and their control by means of boundary layer suction are investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 52–58, March–April, 1990.  相似文献   

15.
Mechanisms are considered by which acoustic oscillations influence the structure of subsonic shear flows. Analysis of the experimental data [1–7] confirms the assumption made in [6] that the regularization of initial perturbations, which causes a higher degree of ordering and an increase in the life of vortices formed because of the development of instability waves or interaction of acoustic oscillations with the edge of the nozzle, is one of the mechanisms by which acoustics influences various shear flows. Photographs are given which show the regularizing effect of acoustics on the development of vortices in the wake behind the edge.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 171–174, January–February, 1986.  相似文献   

16.
The stability of a laminar boundary layer of a power-law non-Newtonian fluid is studied. The validity of the Squire theorem on the possibility of reducing the flow stability problem for a power-law fluid relative to three-dimensional disturbances to a problem with two-dimensional disturbances is demonstrated. A numerical method of integrating the generalized Orr-Sommerfeld equation is constructed on the basis of previously proposed [1] transformations. Stability characteristics of the boundary layer on a longitudinally streamlined semiinfinite plate are considered.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 101–106, January–February, 1976.  相似文献   

17.
The interaction of sound with a supersonic boundary layer is considered. Because of the dependence of the main flow on the longitudinal coordinate, a sound wave generates unstable oscillations within the boundary layer. Calculations made for Mach number M = 2.0 and dimensionless frequency 2πfve/Ue 2 = 0.91·10?4 showed that near the lower branch of the curve of neutral stability a Tollmien—Schlichting wave can be excited with an intensity 2–3 times greater than that of the external acoustic wave.  相似文献   

18.
The three-frequency resonance of Tolman-Schlichting waves, one of which propagates along the stream while the other two propagate at adjacent angles to it, is investigated as a function of the spectrum and initial intensity in incompressible flows of the boundary-layer type within the framework of a weakly nonlinear theory. In the parallel-flow approximation such an interaction leads to the formation of unstable self-oscillations. The spatial evolution of the associated disturbances is studied with allowance for the self-similar deformation of the velocity profile of the main flow. It is shown that such development can lead to a sharp amplification of the oscillations, primarily of those propagating at an angle to the flow. The role of the effects under consideration in the transitional process and the connection with experimental data are discussed. As experiments [1, 2] show, in the process of a transition from a laminar boundary layer to a turbulent region, well described by the linear theory of hydrodynamic stability, there first comes a section of the excitation of harmonics of a Tolman-Schlichting wave, the appearance of three-dimensional structures, and a rapid growth in the intensity of low-frequency oscillations. There is no doubt that in this section the phenomena are dependent on the nonlinear character of the development with disturbances. The resonance interaction of wave triads can play an important role in this. For small enough amplitudes such an interaction is described by a first-order theory [3, 4], and in the general case the nonlinear effects associated with them should occur sooner than others. The importance of resonance triads for the explanation of the development of three-dimensional structures in a layer and the generation of intense pulsations has already been emphasized in [5, 6]. The clarification of the properties of the evolution of resonantly interacting disturbances therefore is important for an understanding of this transitional process.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 78–84, September–October, 1978.The authors thank V. Ya. Levchenko for a discussion of the work.  相似文献   

19.
The effect of the disturbances introduced by creating a local step in the wall surface of the inlet section on boundary layer transition within the entrance length of a circular pipe is investigated. Special attention is paid to the velocity fluctuations outside the boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 30–34, November–December, 1989.  相似文献   

20.
The problem of the stability of the interface between two infinite layers of different immiscible liquids is considered. It is assumed that within the liquid a distributed volume heat source, simulating Joule heating, is given. The stability of the rest state with respect to small unsteady disturbances is investigated. The investigation is carried out using the real boundary conditions at the interface between the two liquids rather than the model boundary conditions usually employed in such problems [5]. The problem considered is related to the practical question of the stability of electrolyzer processes. In the present case a possible threshold mechanism of development of oscillations of the electrolyte-aluminum interface is examined. A numerical example with liquid parameters that coincide with those of the electrolyte and aluminum shows that the thermocapillary instability mechanism can, in fact, be the source of surface waves at the electrolyte-aluminum interface.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 156–160, September–October, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号