首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The wave structure of the artificial disturbances generated by an external acoustic field in a supersonic boundary layer is investigated. The disturbances are classified with respect to phase velocity. Disturbances whose phase velocity in the direction of flow is greater than unity and waves located at the boundary of the discrete and continuous spectra are detected.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 82–86, May–June, 1989.  相似文献   

2.
A method for solving equations that describe the dynamics of wave packets of the Tollmien–Schlichting waves in the boundary layer is proposed. The method of splitting the initial problem into the linear and nonlinear parts at each time step is used. The linear part is resolved by using an equation for spectral components of the wave packet with a subsequent Fourier transform from the space of wavenumbers to the physical space. A system of ordinary differential equations is solved in the physical space. The Fourier transform is performed by means of the library procedure of the fast Fourier transform. As examples, the problems solved were the linear dynamics of the wave packet concentrated in the vicinity of the instability region (i.e., a set of wave vectors in the space of wavenumbers for which the imaginary part of the eigenfrequency of the Tollmien–Schlichting waves is positive) and the nonlinear dynamics of the wave packet overlapping the instability region.  相似文献   

3.
A. I. Ruban 《Fluid Dynamics》1990,25(2):213-221
The development of wave packets excited in a boundary layer by means of a local deformation of the surface in the longitudinal-transverse interaction regime is considered. A solution of the linearized system of equations of interaction theory is constructed using a Laplace transformation with respect to time and a Fourier transformation with respect to the space variables. Two problems are separately examined. In the first, the disturbances are induced by a surface deformation sinusoidal in the transverse direction. It is shown that the center of the wave packet with the greatest oscillation amplitude moves in a direction opposite to that of the flow in the boundary layer. At the same time the wave packet expands, so that in the course of time any fixed point will enter the region of growing oscillations. In the second problem the source of the disturbances is isolated. In this case the wave packet acquires a horseshoe shape. Expanding, it carries the disturbances away from the source in all directions, including upstream relative to the flow in the boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 59–68, March–April, 1990.  相似文献   

4.
The results of an experimental investigation of the three-dimensional stability of a boundary layer with a pressure gradient are presented. A low-turbulence subsonic wind tunnel was employed. The development of a three-dimensional wave packet of oscillations harmonic in time in the boundary layer on a model wing is studied. The amplitudephase distributions of the pulsations in the wave packet are subjected to a Fourier analysis. Spectral (with respect to the wave numbers) decomposition of the oscillations enables the flow stability with respect to plane waves with different directions of propagation to be examined. The results are compared with the corresponding data obtained in flat plate experiments. The effect of the pressure gradient on the development of the three-dimensional spectral components of the disturbances and the dispersion properties of the flow is analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 85–91, May–June, 1988.  相似文献   

5.
The processes of wave disturbance propagation in a supersonic boundary layer with self-induced pressure [1–4] are analyzed. The application of a new mathematical apparatus, namely, the theory of characteristics for systems of differential equations with operator coefficients [5–8], makes it possible to obtain generalized characteristics of the discrete and continuous spectra of the governing system of equations. It is shown that the discontinuities in the derivatives of the solution of the boundary layer equations are concentrated on the generalized characteristics. It is established that in the process of flow evolution the amplitude of the weak discontinuity in the derivatives may increase without bound, which indicates the possibility of breaking of nonlinear waves traveling in the boundary layer.  相似文献   

6.
The development of disturbances in a boundary layer that have been induced by an external acoustic field are investigated. The problem is considered in the linear formulation. It is shown that the oscillations inside the supersonic boundary layer can have several times the intensity of the external disturbances. The susceptibility of the boundary layer to the acoustic disturbances increases with increasing Mach number. Cooling of the surface leads to a small decrease in the intensity of the longitudinal velocity oscillations in the layer. The effect of the parameters of the acoustic wave is considered, i.e., the effect of the frequency and phase velocity on the development of the disturbances.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 51–56, November–December, 1977.  相似文献   

7.
Within the framework of the weakly nonlinear stability theory, group interaction of disturbances in a supersonic boundary layer is considered. The disturbances are represented by two spatial packets of traveling instability waves (wave trains) with multiple frequencies. The possibility of energy redistribution in such wave systems in the case of three-wave resonant interactions of packet constituents is considered. The model is used to test the dynamics of unstable waves arising due to introduction of controlled high-intensity disturbances into a supersonic boundary layer. It is found that this mechanism is not the main one for the features of streamwise dynamics of such nonlinear waves being observed.  相似文献   

8.
The nonlinear problem of boundary layer instability under the influence of a plane vortex is investigated for high Reynolds numbers. The vortex occupies the entire thickness of the boundary layer and has a longitudinal dimension of the order of the Tollmien-Schlichting wavelength. The initial vortex is rapidly swept away by the flow, inducing a Stokes layer near the surface of the plate. Expanding, this layer reaches the dimensions of the viscous sublayer of free interaction theory, where wave packet generation takes place. In the case in question a feature of the nonlinear stage of development of the disturbances is the formation of a concentrated vortex, which arises in the Stokes layer and grows rapidly, whereas the wave packet propagated ahead of it remains linear. From the calculations there emerges a tendency for the new vortex to be formed above the wail, whereas the maximum vorticity of the vortex generated in the Stokes layer corresponds to the wall itself.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 70–77, January–February, 1993.The authors are grateful to V. V. Kozlov for his interest in their work.  相似文献   

9.
A study is made of the region of free interaction of a supersonic boundary layer on a moving surface formed by a weak shock wave impinging on it from without. In the equations of motion, allowance is made for the contribution of the pressure induced by the growth in the displacement thickness of jets passing near the surface. The results are given of the numerical solution of the corresponding nonlinear problem, and the basic structure of the recirculation zones is discussed. It is noted that there are regimes in which the main recirculation zone is accompanied by an additional eddy formation with circulation in the opposite direction. In contrast to a boundary layer on a fixed body, the points at which the streamlines separate are not on the wall but within the flow.Translated from Izvestiya Akademii Nauk SSSR, Meklianika Zhidkosti i Gaza, No. 5, pp. 3–10, September–October, 1980.  相似文献   

10.
The recovery factor on a permeable surface has been experimentally determined at various rates of injection of air into a supersonic turbulent boundary layer. On the basis of an analysis of the solutions of the integral momentum and energy equations for a turbulent boundary layer an expression is obtained for the recovery factor. The recovery factor in the region of a protective gas surface film in a supersonic external flow has been experimentally determined.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 131–136, March–April, 1972.  相似文献   

11.
A Blasius laminar boundary layer and a steady turbulent boundary layer on a flat plate in an incompressible fluid are considered. The spectral characteristics of the Tollmien—Schlichting (TS) and Squire waves are numerically determined in a wide range of Reynolds numbers. Based on the spectral characteristics, relations determining the three–wave resonance of TS waves are studied. It is shown that the three–wave resonance is responsible for the appearance of a continuous low–frequency spectrum in the laminar region of the boundary layer. The spectral characteristics allow one to obtain quantities that enter the equations of dynamics of localized perturbations. By analogy with the laminar boundary layer, the three–wave resonance of TS waves in a turbulent boundary layer is considered.  相似文献   

12.
There have been many theoretical studies of aspects of the unsteady interaction of an exterior inviscid flow with a boundary layer [1–9]. The mathematical flow models obtained in these studies by the method of matched asymptotic expansions describe a wide range of phenomena observed experimentally. These include boundary layer separation near the hinge of a flap, the flow in the neighborhood of the trailing edge of an oscillating airfoil [1–2], and the development and propagation of perturbations in a boundary layer excited by an oscillating wall or some other way [3–5]. The present paper studies the interaction of an unsteady boundary layer with a supersonic flow when a small part of the surface of a body in the flow is rapidly heated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 66–70, January–February, 1984.  相似文献   

13.
A study is made of the flow of a compressible gas in a laminar boundary layer on swept-back wings of infinite span in a supersonic gas flow at different angles of attack. The surface is assumed to be either impermeable or that gas is blown or sucked through it. For this flow and an axisymmetric flow an analytic solution to the problem is obtained in the first approximation of an integral method of successive approximation. For large values of the blowing or suction parameters, asymptotic solutions are found for the boundary layer equations. Some results of numerical solution of the problem obtained by the finite-difference method are given for wings of various shapes in a wide range of angles characterizing the amount by which the wings are swept back and also the blowing or suction parameters. A numerical solution is obtained for the equations of the three-dimensional mixing layer formed in the case of strong blowing of gas from the surface of the body. The analytic and numerical solutions are compared and the regions of applicability of the analytic expressions are estimated. On the basis of the solutions obtained in the present paper and studies of other authors a formula is proposed for the calculation of the heat fluxes to a perfectly catalytic surface of swept-back wings in a supersonic flow of dissociated and ionized air at different angles of attack. Flow over swept-back wings at zero angle of attack has been considered earlier (see, for example, [1–4]) in the theory of a laminar boundary layer. In [5], a study was made of flow over swept-back wings at nonzero angle of attack at small and moderate Reynolds numbers in the framework of the theory of a hypersonic viscous shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 27–39, May–June, 1980.We thank G. A. Tirskii for a helpful discussion of the results.  相似文献   

14.
The development of three-dimensional wave packets artificially introduced into a boundary layer has been experimentally investigated. The measurements were made by the hot-wire anemometer method in the boundary layer on a flat plate at a Mach number M = 4. The artificial disturbances were introduced into the boundary layer by means of an electric discharge. A Fourier analysis of the data made it possible to obtain the wave characteristics of the plane waves. The composition of the disturbances was analyzed and those most dangerous from the instability standpoint were identified. The data obtained are compared with the results of experiments carried out at M = 2. The differences in the data are discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 54–58, November–December, 1990.  相似文献   

15.
The non-free interaction between a shock wave and the boundary layer on a swept plate set at incidence in the undisturbed flow is studied using different experimental methods including special laser techniques for visualizing supersonic conical gas flows. It is shown that under shock-layer conditions the non-free interaction can lead to conical flow breakdown before the incident shock reaches the leading edge of the plate.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 45–58. Original Russian Text Copyright © 2004 by Zubin and Ostapenko.  相似文献   

16.
The immersion of a three-dimensional blunt convex body in a compressible fluid with nonpositive acceleration is considered in the linear formulation. It is shown that at every instant the perturbation zone will be convex. The fluid particle velocity and pressure are calculated at each point on the wave front. At every instant the wave front is wholly determined by the initial supersonic stage of propagation of the boundary of the body-fluid interaction zone.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 5–11, July–August, 1992.The author wishes to thank A. G. Khovanskii for his constant interest.  相似文献   

17.
The effect on the aerodynamic drag of the real properties of the gas in the shock layer around pyramidal star-shaped bodies (the viscosity, the displacement thickness of the boundary layer, its separation under the influence of the inner shocks) is considered. It is shown that the models for calculating the total drag of star-shaped bodies which do not take into account the displacement thickness of the boundary layer are applicable only at low supersonic free-stream velocities (M < 3). A model of the boundary layer displacement thickness is proposed and tested over a broad range of variation of the parameters that determine the geometry of the pyramidal bodies for high supersonic or hypersonic speeds. A comparison with the experimental data shows that the calculation procedure adequately reflects the results of experiments on the aerodynamic drag of star-shaped bodies in cases in which the inner shocks in the shock layer do not lead to boundary layer separation and can be used in optimization problems.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 57–69, January–February, 1993.  相似文献   

18.
The classical two-dimensional compressible boundary-layer equations supplemented by a relation describing the interaction of boundary layer with external inviscid flow (see, e.g., [1]) are treated as the governing equations in one of the methods to study the viscous-inviscid interaction. It is then necessary in the case of supersonic flow to specify certain downstream boundary conditions for the closure of the governing system, i.e., it is a boundary-value problem (e.g., [2]). The shooting technique for parameters at the beginning of the computational region to obtain the solution satisfying such a condition usually requires large computer time since the integral curves are highly sensitive to small changes in upstream boundary conditions. A more effective method is the algorithm of global relaxations of pressure distribution along the entire computational region [1]. A numerical method to compute supersonic interacting boundary layer in the presence of separation is presented in this paper.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 89–93, January–February, 1984.  相似文献   

19.
A relatively simple method of calculating the parameters of the flow behind a blunt trailing edge separating two supersonic streams is developed. The method is based on the use of the boundary layer approximation and integral laws of mass and energy conservation (viscous-inviscid interaction model). It makes it possible to determine the base pressure and base enthalpy with allowance for the effect of Mach numbers, Reynolds numbers, initial boundary layer thicknesses, specific heat ratios and wall enthalpies for various ratios of the total pressures and enthalpies of the two streams.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 167–176, September–October, 1991.  相似文献   

20.
The initial-boundary value problem of the development of two-dimensional inviscid disturbances excited by an external unsteady local action, turned on at time t=0, is examined. The spectrum of the problem is investigated by means of the WKB method and numerical calculations, and the asymptotic expansions of the wave packets as t are found. It is shown that, contrary to the conclusions of [4], the inviscid instability of the supersonic boundary layer is convective. The reasons for this discrepancy are analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 21–29, May–June, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号