首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.
Heat transfer from an obliquely impinging circular, air jet to a flat plate   总被引:5,自引:0,他引:5  
A series of experiments was conducted for the measurement of local convective heat transfer coefficients for an obliquely impinging circular air jet to a flat plate. In the experiments, the oblique angles selected were 90°, 75°, 60° and 45°, with 90° being a vertical jet. Two different Reynolds numbers of 10,000 and 23,000 were considered for the purpose of comparison with previous data available in the literature. Another parameter varied in the measurements was the dimensionless jet-to-plate distance, L/D. Four values of L/D(2, 4, 7, and 10) were considered in the experiments. The experiments were conducted using the preheated wall transient liquid-crystal technique. Liquid-crystal color changes were recorded with a video system. Local convective heat transfer coefficients were obtained through the surface transient temperatures that were related to the recorded color information. Detailed local heat transfer coefficients were presented and discussed in relation to the asymmetric wall jet upon impingement of the jet flow. Results of experiments show that, for a given flow situation, the point of maximum heat transfer shifts away from the geometrical impingement point toward the compression side of the wall jet on the axis of symmetry. The shift is more pronounced with a smaller oblique angle (larger jet inclination) and a smaller jet-to-plate distance. Comparisons of experimental results with existing heat transfer data for both obliquely impinging jets and vertical impinging jets are made. The effect of oblique angles on heat transfer was assessed.  相似文献   

2.
Experimental studies were carried out to investigate the fluid flow and heat transfer around a heated circular cylinder which was placed at various distances of a wall boundary with different geometries (flat or curved plate) with subcritical Reynolds number ranging from 3.5×103 to 104. The effects of plate geometry (aspect ratio: W|H=1.0,1.5 and 2.0, and rim angle, φ=0°,60°,90°, and 120°) and gap ratio, (G|D=0.0,0.86,2.0,7.0,10.0) on the fluid flow and heat transfer characteristics (static pressure around cylinder surface, wake width, base pressure, pressure drag coefficients, velocity distribution, and both local and mean Nusselt numbers) were presented. Also flow visualization was carried out to illustrate the flow patterns around the cylinder at various gap ratios (G|D). It was found that the heat transfer and fluid flow characteristics are dependent on the plate geometry at all tested gap ratios, except for G|D=7.0 and 10.0, they are independent of the plate geometry.  相似文献   

3.
An experimental study of convective boiling of refrigerants R-22, R-134a and R-404A in a 12.7 mm internal diameter, 2 m long, horizontal copper tube has been performed. Experiments involved a relatively wide range of operational conditions. Experiments were performed at the evaporating temperatures of 8°C and 15°C. Quality, mass velocity and heat flux varied in the following ranges: 5% to saturated vapor, 50–500 kg/(s m2); and 5–20 kW/m2. Effects of these physical parameters over the heat transfer coefficient have been investigated. High quality experiments were also performed up to the point of the tube surface dryout, a mechanism which was investigated from the qualitative point of view. Two heat transfer coefficient correlations from the literature have been evaluated through comparisons with experimental data. Deviations varied in the range from −25% to 42%.  相似文献   

4.
This paper presents the results of an experimental study carried out with R-134a during flow boiling in a horizontal tube of 2.6 mm ID. The experimental tests included (i) heat fluxes in the range from 10 to 100 kW/m2, (ii) the refrigerant mass velocities set to the discrete values in the range of 240-930 kg/(m2 s) and (iii) saturation temperature of 12 and 22 °C. The study analyzed the heat transfer, through the local heat transfer coefficient along of flow, and pressure drop, under the variation of these different parameters. It was possible to observe the significant influence of heat flux in the heat transfer coefficient and mass velocity in the pressure drop, besides the effects of saturation temperature. In the low quality region, it was possible to observe a significant influence of heat flux on the heat transfer coefficient. In the high vapor quality region, for high mass velocities, this influence tended to vanish, and the coefficient decreased. The influence of mass velocity in the heat transfer coefficient was detected in most tests for a threshold value of vapor quality, which was higher as the heat flux increased. For higher heat flux the heat transfer coefficient was nearly independent of mass velocity. The frictional pressure drop increased with the increase in vapor quality and mass velocity. Predictive models for heat transfer coefficient in mini channels were evaluated and the calculated coefficient agreed well with measured data within a range 35% for saturation temperature of 22 °C. These results extend the ranges of heat fluxes and mass velocities beyond values available in literature, and add a substantial contribution to the comprehension of boiling heat transfer phenomena inside mini channels.  相似文献   

5.
Direct contact heat transfer between water and a heat transfer oil was investigated under non-boiling conditions in co-current turbulent flow through a horizontal concentric annulus. The ratio of the inner pipe diameter to the outer pipe diameter (aspect ratio) κ = 0.730−0.816; total liquid velocity (mixture velocity) VT = 0.42−1.1 m/s; inlet oil temperature Toi = 38−94°C; oil volume fraction in the flowing mixture φo = 0.25−0.75 were varied and their effects on the overall volumetric heat transfer coefficient Uv were determined at constant interfacial tension of 48 dynes/cm.

It was found that, in each concentric pipe set, the overall volumetric heat transfer coefficient increased with increasing dispersed phase volume fraction at each constant mixture velocity and reached a maximum at around φo = φw ≈ 0.5. The maximum Uv values increased with increasing total liquid velocity and decreasing aspect ratio of the annulus. The volumetric heat transfer coefficient was also found to increase with increasing inlet oil temperature and increasing total liquid velocity but to decrease with length along the test section keeping all other parameters constant. Empirical expressions for the volumetric heat transfer coefficient were obtained within the ranges of the experimental parameters.  相似文献   


6.
Spirally fluted tubes are used extensively in the design of tubular heat exchangers. In previous investigations, results for tubes with flute depths e/Dvi < 0.2 were reported, with most correlations applicable for Re ≥ 5000. This paper presents the results of an experimental investigation of the heat transfer and pressure drop characteristics of spirally fluted tubes with the following tube and flow parameter ranges: flute depth e/Dvi = 0.1−0.4, flute pitch p/Dvi = 0.4−7.3, helix angle θ/90° = 0.3−0.65, Re = 500−80,000, and Pr = 2−7. The heat transfer coefficients inside the fluted tube were obtained from measured values of the overall heat transfer coefficient using a nonlinear regression scheme. The friction factor data obtained consisted of 507 data points. The proposed correlation for the friction factor predicts 96% of the database within ±20%. The heat transfer correlation for the range 500 ≤ Re ≤ 5000 predicts 76% of the database (178 data points) within ±20%, and the correlation for the higher Re range predicts 97% of the 342 data points within ±20%. Comparison of heat transfer and friction data show that these tubes are most effective in the laminar and transition flow regimes. The present results show that the increase of flute depth in the range considered does not improve heat transfer.  相似文献   

7.
This paper presents the experimental results of the local heat transfer for falling film evaporation of water sheet by solving the inverse heat conduction problem. It is shown that the local heat transfer coefficients increase by increasing the air flow velocity, the film liquid flow rate or decreasing the inlet bulk film temperature. Correlations for the mean heat transfer coefficients in the absence of superimposed flow for the stagnation region, the thermally developed region and the bottom of the heated cylinder are proposed.  相似文献   

8.
In the present experimental study, a correlation is proposed to represent the heat transfer coefficients of the boiling flows through horizontal rectangular channels with low aspect ratios. The gap between the upper and the lower plates of each channel ranges from 0.4 to 2 mm while the channel width being fixed to 20 mm. Refrigerant 113 was used as the test fluid. The mass flux ranges from 50 to 200 kg/m2 s and the channel walls were uniformly heated up to 15 kW/m2. The quality range covers from 0.15 to 0.75 and the flow pattern appeared to be annular. The modified Lockhart–Martinelli correlation for the frictional pressure drop was confirmed to be within an accuracy of ±20%. The heat transfer coefficients increase with the mass flux and the local quality; however the effect of the heat flux appears to be minor. At the low mass flux condition, which is more likely to be with the smaller gap size, the heat transfer rate is primarily controlled by the liquid film thickness. A modified form of the enhancement factor F for the heat transfer coefficient in the range of ReLF200 well correlates the experimental data within the deviation of ±20%. The Kandlikar's flow boiling correlation covers the higher mass flux range (ReLF>200) with 10.7% mean deviation.  相似文献   

9.
Most of the studies on gas turbine blade internal channels have focused on constant cross-sectional areas from entrance to turn. Gas turbine blades are typically tapered from hub to tip to reduce thermal loading. These channels exist inside high-performance turbine blades for providing effective cooling to the blade external surface, which is exposed to high-temperature gas flow. Heat transfer measurements are presented for both the straight and tapered square channels including the turn region with and without rib turbulators. The straight channels will have a uniform square cross-section area of 5.08×5.08 cm2. For the tapered channels, the square cross-sectional area reduces from entrance into the first pass (5.08×5.08 cm2) to the 180° turn (2.54×2.54 cm2) and then expands from turn to exit in the second pass (5.08×5.08 cm2). The heat transfer results for tapered channels are compared with results for straight channels. Results show that heat transfer in tapered smooth channels is enhanced significantly due to flow acceleration in the first pass, a combination of taper and turn and flow deceleration in the second pass. Overall, the tapered channels significantly produce higher heat transfer enhancements compared to the Dittus–Boelter correlation for fully developed flow especially in the after-turn region. Based on the results from this study, the heat transfer inside tapered channels in the after-turn region cannot be predicted by calculating local Reynolds numbers and using straight channel heat transfer correlations. However, the first pass Nusselt number enhancement distributions are similar for both straight and tapered channels when normalized using the local Nusselt number based on local Reynolds number. The difference in the after-turn region between the straight and tapered channels is reduced with the addition of rib turbulators.  相似文献   

10.
The aim of the present study is to obtain surface flow visualisation, as well as local and spanwise averaged heat transfer measurements near a 180° sharp turn in a rectangular channel. The channel aspect ratio (width to height ratio) varies from 1 to 5 and the ratio between the width of the channel and that of the partition wall is always equal to 5. Heat transfer measurements are performed by means of the heated-thin-foil technique, which practically corresponds to a constant heat flux boundary condition, and by using infrared (IR) thermography. Two different heating conditions, in particular heating from one side (asymmetrical), or from two sides (symmetrical), are implemented. The convective heat transfer coefficient is evaluated from the measured temperature maps and the local bulk temperature of the flow which is obtained by making a one-dimensional balance along the channel. Results are presented in terms of local, or averaged, Nusselt number which is normalised with the classical Dittus and Boelter correlation. The fluid used during the test is air and the Reynolds number, based on the flow average velocity and channel hydraulic diameter, is varied between 16,000 and 60,000.  相似文献   

11.
Parameters that affect the efficiency of a flat plate integrated collector storage solar water heater (ICSSWH) are examined experimentally and numerically. This specific ICSSWH contains water that is not refreshed. The service water is heated indirectly through an immersed heat exchanger (HE) in contact with the front and back major surfaces. A forced convection mechanism consisting of a pump that brings the storage water into motion by recirculation is used for heat transfer intensification. The two major (front and back) flat plate surfaces need to be well interconnected so that they are not deformed by the weight of the contained water and the exerted high-pressure. Two main factors that influence the performance are optimized: the position and size of the recirculation ports and the arrangement and size of the interconnecting fins. Both factors are explored to maximize the velocity flow field of the recirculated storage water. Consequently, the heat transfer rate between the two water circuits is maintained at high levels. Various 3D computational fluid dynamics (CFD) models are developed using the FLUENT package. An experimental model, made by Plexiglas, is used for the visualization of the flow field. Flow velocities are measured using a laser doppler velocimetry (LDV) system. The optimal arrangement increases the mean storage water velocity by 65% and raises the outlet temperatures up to 8 °C.  相似文献   

12.
Whole field velocity and point temperature and surface heat flux measurements were performed to characterise the interaction of a single rising ellipsoidal air bubble with the free convection flow from a heated flat surface immersed in water at different angles of inclination. Two thermocouples and a hot film sensor were used to characterise heat transfer from the surface, while a time-resolved digital particle image velocimetry technique was used to map the bubble induced flow in a plane parallel to the surface. Heat flux fluctuations, preceding and following the bubble passage, were shown to correlate with the variation in both local flow velocities and fluid temperatures. The largest increases in heat transfer were recorded when both flow and temperature effects combined to enhance the convective cooling simultaneously. Such conditions were shown to be most likely met when the block was inclined at 45°, thus forcing the bubble to slide closer to the heated surface and hence to the thermal boundary layer.  相似文献   

13.
The results of an experimental investigation of the heat transfer coefficients for forced convection from a NACA-63421 airfoil are presented. Wind tunnel measurements of convection coefficients are obtained for air flow temperatures from −30 to 20 °C. The experimental data is correlated with respect to the Nusselt and Reynolds numbers. Conduction within the airfoil balances heat transfer by convection from the airfoil surface in steady-state conditions. Both average and spatial variations of the heat transfer coefficients are non-dimensionalized through modifications of a classical Hilpert correlation for cylinders in crossflow. It is shown that the functional form of the Hilpert correlation can effectively accommodate measured data for the NACA airfoil over a range of Reynolds numbers. An uncertainty analysis is performed to yield a 7.34% measurement uncertainty for experimental data correlated with the Nusselt number.  相似文献   

14.
Experimental condensation heat transfer data for the new refrigerant R1234ze(E), trans-1,3,3,3-tetrafluoropropene, are presented and compared with refrigerants R134a and R236fa for a vertically aligned, aluminum multi-port tube. Local condensation heat transfer measurements with such a multi-microchannel test section are very challenging due to the large uncertainties related to the heat flux estimation. Presently, a new experimental test facility was designed with a test section to directly measure the wall temperature along a vertically aligned aluminum multi-port tube with rectangular channels of 1.45 mm hydraulic diameter. Then, a new data reduction process was developed to compute the local condensation heat transfer coefficients accounting for the non-uniform distribution of the local heat flux along the channels. The condensation heat transfer coefficients showed the expected decrease as the vapor quality decreased (1.0-0.0) during the condensation process, as the mass velocity decreased (260-50 kg m−2 s−1) and as the saturation temperature increased (25-70 °C). However, the heat transfer coefficients were not affected by the condensing heat flux (1-62 kW m−2) or by the entrance conditions within the tested range. It was found that the heat transfer performance of R1234ze(E) was about 15-25% lower than for R134a but relatively similar to R236fa. The experimental data were then compared with leading prediction methods from the literature for horizontal channels. In general, the agreement was poor, over-predicting the high Nusselt number data and under-predicting the low Nusselt number data, but capturing the mid-range quite well. A modified correlation was developed and yielded a good agreement with the current database for all three fluids over a wide range of operating conditions.  相似文献   

15.
Two-phase air–water flow and heat transfer in a 25 mm internal diameter horizontal pipe were investigated experimentally. The water superficial velocity varied from 24.2 m/s to 41.5 m/s and the air superficial velocity varied from 0.02 m/s to 0.09 m/s. The aim of the study was to determine the heat transfer coefficient and its connection to flow pattern and liquid film thickness. The flow patterns were visualized using a high speed video camera, and the film thickness was measured by the conductive tomography technique. The heat transfer coefficient was calculated from the temperature measurements using the infrared thermography method. It was found that the heat transfer coefficient at the bottom of the pipe is up to three times higher than that at the top, and becomes more uniform around the pipe for higher air flow-rates. Correlations on local and average Nusselt number were obtained and compared to results reported in the literature. The behavior of local heat transfer coefficient was analyzed and the role of film thickness and flow pattern was clarified.  相似文献   

16.
The local heat transfer and pressure drop characteristics of developing turbulent flows of air in three stationary ribbed square ducts have been investigated experimentally. These are: ribbed square duct with constant cross-section (straight duct), ribbed divergent square duct and ribbed convergent square duct. The convergent/divergent duct has an inclination angle of 1°. The measurement was conducted within the range of Reynolds numbers from 10 000 to 77 000. The heat transfer performance of the divergent/convergent ducts is compared with the ribbed straight duct under three constraints: identical mass flow rate, identical pumping power and identical pressure drop. Because of the streamwise flow acceleration or deceleration, the local heat transfer characteristics of the divergent and convergent ducts are quite different from those of the straight duct. In the straight duct, the fluid flow and heat transfer become fully developed after 2–3 ribs, while in the divergent and convergent ducts there is no such trend. The comparison shows that among the three ducts, the divergent duct has the highest heat transfer performance, the convergent duct has the lowest, while the straight duct locates somewhere in between.  相似文献   

17.
An experimental study has been conducted to investigate the condensate carryover phenomena in dehumidifying heat exchangers. Two wavy finned-tube coils were tested, for which the fin surfaces were treated to provide either low or high contact angles. The receding contact angle on the fins of the two coils were 70° and 10°, respectively. The distribution of condensate carryover was measured along the tunnel bottom downstream from the coil for different air frontal velocities. As the frontal velocity increases, the quantity of condensate carryover increases, and the condensate is blown further from the coil. The receding contact angle on the fin surface is a key factor controlling the condensate carryover characteristics. The coil having a 10° receding contact angle shows significantly less condensate carryover than the coil having a 70° receding contact angle. Numerous condensate droplets and bridges were observed on the fin surfaces of the 70° receding contact angle coil; however, few were seen for the 10° receding contact angle coil. The dominant carryover results from droplets formed from bridged condensate, and the diameter of the resulting droplets is approximately 3.0 mm.  相似文献   

18.
A neural network has been used to predict stagnation region heat transfer in the presence of freestream turbulence. The neural network was trained using data from an experimental study to investigate the influence of freestream turbulence on stagnation region heat transfer. The integral length scale, Reynolds number, all three components of velocity fluctuations and the vorticity field were used to characterize the freestream turbulence. The neural network is able to predict 50% of the test data within ±1%, while the maximum error of any data point is under 3%. A sensitivity analysis of the freestream turbulence parameters on stagnation region heat transfer was performed using the trained neural network. The integral length scale is found to have the least influence on the stagnation line heat transfer, while the normal and spanwise turbulence intensities have the highest influence.  相似文献   

19.
The heat transfer characteristics around a single horizontal heated tube immersed in air fluidized bed was investigated, to clarify the mechanism of heat transfer in a fluidized bed heat exchanger. The local heat transfer coefficient around the tube was measured at various fluidization velocities and five different solid particles. The experimental values of the local heat transfer coefficient at the minimum fluidization velocity condition were correlated with the particle size in two empirical equations. The predicted results were in good agreement with the experiment data.  相似文献   

20.
This study reports an experimental investigation related to a rectangular single-phase natural circulation mini-loop, which consists of two horizontal copper tubes (heat transfer sections) and two vertical tubes (legs) made of copper, connected by means of four glass 90° bends. The loop inner diameter is 4 mm. The lower heating section consists of an electrical heating wire made of nicromel on the outside of the copper tube; the upper cooling system consists of a coaxial cylindrical heat exchanger with a water–glycol mixture, set at controlled temperature and flowing through the annulus. The loop has an imposed heat flux in the lower heating section and an imposed temperature in the cooler. The mini-loop was placed onto a table which can assume different inclinations. The parameters investigated during the experiments were: power transferred to the fluid and inclination of the loop. The preliminary results show a stable behaviour with a steady temperature difference across the heat sinks. It has been confirmed that the fluid velocity is very small (order of millimetres per second).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号