首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using the formula derived in Part ( Ⅰ ), the instant response of an unrestrained planar frame structure subjected to the impact of a moving rigid-body are evaluated and analysed. The impact force-time history between the structure and the moving rigid-body, shear force and bending moment distribution along the beams, axial force distribution along the bars were calculated. The wave propagation phenomena of the longitudinal wave in the bars, the flexural and shear waves in the beams were also analysed. The numerical results show that the time duration of impact force is controlled by the flexural wave and the longitudinal wave ; the shear effect in beams should not be neglected in the impact response analysis of structures.  相似文献   

2.
By using the formula derived in Part (Ⅰ), the instant response of an unrestrained planar frame structure subjected to the impact of a moving rigid-body are evaluated and analysed.The impact force-time history between the structure and the moving rigid-body, shear force and bending moment distribution along the beams, axial force distribution along the bars were calculated. The wave propagation phenomena of the longitudinal wave in the bars, the flexural and shear waves in the beams were also analysed. The numerical results show that the time duration of impact force is controlled by the flexural wave and the longitudinal wave; the shear effect in beams should not be neglected in the impact response analysis of structures.  相似文献   

3.
A method for the localization and characterization of defects in waveguide-like structures is presented in this paper. In contrast to traditional ultrasound and guided wave techniques, a broadband signal is used to enforce strong dispersion of the flexural wave mode. Since dispersion is well compensated in a time reversal experiment we use a time reversal numerical simulation to identify the origin and the original shape of the flexural wave excited at a local non-uniformity due to mode conversion. Limitations of the time reversal process for broadband signals due to multimode and evanescent behavior of guided waves are discussed and eliminated using a Timoshenko beam model. The resulting novel process which uses both flexural and longitudinal wave information allows detection, localization and size estimation of several defects in a beam with only a single measurement. The method proposed is experimentally validated on rectangular solid beams and cylindrical hollow beams with notches of different sizes and positions. Up to three notches could be localized from one measurement, with a maximum error of 3% with respect to the propagation distance. The size was accurately predicted for notches as small as 0.5 mm depth or 8.3% of the cross section, using a generalized spring model of a crack.  相似文献   

4.
研究复合材料加肋层合板结构受冲击载荷作用下的瞬态波传播.加肋层合板模型被处理成层合板的弯曲运动与层合梁的扭转与弯曲运动的耦合连续模型.通过Laplace变换,并采用回传射线矩阵法(MRRM),基于一阶剪切变形层合板理论,确定复合材料加肋层合板结构中传播的各条射线群.采用FFT变换,计算各种冲击载荷作用下加肋层合板结构的短时瞬态响应,并分析讨论脉冲类型对加肋层合板结构短时瞬态响应的影响.  相似文献   

5.
刘凯欣  张凯 《爆炸与冲击》1996,16(2):137-142
根据广义特征理论建立了求解三维非线性应力波传播问题的特征关系式,并采用特征线法对纵向冲击载荷下弹/粘塑性矩形截面棒的三维应力波传播过程进行了数值模拟。  相似文献   

6.
半无限长梁承受恒定弯矩作用后, 如果自由端的初始弯矩突然释放, 将在梁中激发出一列卸载弯曲应力波. 采用铁木辛柯梁和瑞利梁来研究突然卸载所激发出的弯曲波的传播特征. 利用拉普拉斯变换方法进行分析, 首先推导出铁木辛柯梁和瑞利梁中的卸载弯曲波的像函数解析解, 采用数值反变换方法给出了时域上波传播的响应解, 并研究了梁中各点的横向位移、弯矩和剪力随时间的变化规律. 计算结果表明: 与简化的欧拉梁不同, 旋转惯性的引入使铁木辛柯梁和瑞利梁中的弯曲波传播具有强烈的局部化效应, 特别是梁中各点经历的弯矩变化, 和其距离自由端的位置相关, 不同时刻的弯矩峰值大小不同;瑞利梁中离自由端不同距离各点的峰值弯矩先增大后降低, 最后达到一个渐近值;铁木辛柯梁中各点的峰值弯矩总体上随着时间单调增大到同一个渐近值, 该渐近值与欧拉梁中的峰值弯矩值相同, 均为1.43.切应力效应的引入进一步降低了铁木辛柯梁中卸载弯曲波的波速, 同时也使得铁木辛柯梁中弯矩峰值的最大值小于瑞利梁中的最大值. 对于脆性细长梁的纯弯曲断裂, 铁木辛柯梁可以较好地预测二次断裂的发生位置, 相应的碎片尺寸约为7倍梁横截面厚度.   相似文献   

7.
This paper deals with longitudinal and flexural wave propagations in steel bars with structural discontinuities. Numerical simulations were performed using the spectral element method and compared with experimental studies conducted on an intact bar as well as on bars with an additional mass, a notch and a grooved weld. To model longitudinal wave propagation including lateral deformations, special rod spectral elements in time domain (based on Love and Mindlin–Herrmann theories) were formulated. The effect of the three discontinuities on wave propagation is discussed, and the applicability of longitudinal and flexural waves to non-destructive damage detection is investigated.  相似文献   

8.
为求解三维动态热弹性问题提出了一种基于特征线法的数值方法,并对矩形截面的热弹性棒在冲击载荷和热冲击作用下的三维应力波传播过程进行了数值模拟。  相似文献   

9.
This paper is concerned with the numerical technique based on the method of character-istics for three-dimensional dynamic thermoelastic problems. A numerical example for the three-di-mensional stress wave propagation in a thermoelastic bar of square cross section subjected to both animpact loading and a thermal shock is presented.  相似文献   

10.
An experimental study of the propagation of flexural waves in an elastic beam of circular cross section subjected to an approximate-step-function bending moment is given. The test beam was a low-carbon-steel bar 2 in. diam × 30-ft long and was suspended in a vertical position by a pin located near the upper end. The step moment was applied at the upper pinned end of the bar by an arrangement of two high-pressure, nitrogen-operated cylinders. The strains were measured with strain gages located at eight stations along the bar. The experimental results are compared with results obtained from a solution of the “Timoshenko” beam by W. Flügge and E. E. Zajac for a semi-infinite pinned-end beam subjected to a suddenly applied bending moment at the pinned end. The experimental results are correlated with the predictions of the theoretical solution.  相似文献   

11.
In this paper, a novel wavelet based spectral finite element is developed for studying elastic wave propagation in 1-D connected waveguides. First the partial differential wave equation is converted to simultaneous ordinary differential equations (ODEs) using Daubechies wavelet approximation in time. These ODEs are then solved using finite element (FE) technique by deriving the exact interpolating function in the transformed domain. Spectral element captures the exact mass distribution and thus the system size required is very much smaller then conventional FE. The localized nature of the compactly supported Daubechies wavelet allows easy imposition of initial-boundary values. This circumvents several disadvantages of the conventional spectral element formulation using Fast Fourier Transforms (FFT) particularly in the study of transient dynamics. The proposed method is used to study longitudinal and flexural wave propagation in rods, beams and frame structures. Numerical experiments are performed to show the advantages over FFT-based spectral element methods. The efficiency of the spectral formulation for impact force identification is also demonstrated.  相似文献   

12.
An experimental investigation was conducted to determine wave-propagation characteristics, transient-strain distributions and residual properties for unidirectional and angle-ply boron/epoxy and graphite/epoxy laminates impacted with silicon-rubber projectiles at velocities up to 250 ms?1 (820 ft/s). Tests were conducted at normal and 45-deg oblique impact. Strain signals obtained from surface and embedded strain gages were recorded and analyzed to determine the types of waves, propagation velocities, peak strains, strain rates and attenuation characteristics. The predominant wave is a flexural on propagating at different velocities in different directions. The flexural wave velocity is higher in the higher-modulus direction. In general, measured wave velocities were higher than theoretically predicted. The amplitude of the in-plane wave is less than ten percent of that of the flexural wave. Peak strains and strain rates in the transverse to the (outer) fiber direction are much higher than those in the direction of the fibers. Strain rates up to 640 s?1 were measured. Under oblique 45-deg impact, the flexural wave is still the predominant one. Peak strains under this oblique impact range between 36 and 56 percent of those under normal impact of the same velocity. Residual elastic properties and strength were measured around the point of impact. The most significant result was a reduction in the transverse strength of the unidirectional laminates. The dynamics of impact were also studied with high-speed photography. The projectile is completely flattened within 50–70 μs and the total contact time is of the order of 300 μs.  相似文献   

13.
Dynamic fracture behaviour of crack curving in bent beams has been investigated. In order to understand the propagation mechanism of such cracks under impact, an experimental method is used that combines dynamic photoelasticity with dynamic caustics to study the interaction of the flexural waves and the crack. From the state change of the transient stresses in polymer specimen, the curving fracture in the impulsively loaded beams is analyzed. The dynamic responses of crack tips are evaluated by the stress intensity factors for the cracks running in varying curvature paths under bending stress wave. The project supported by the National Natural Science Foundation of China and the Scientific Commission of Yunnan Province of China  相似文献   

14.
Euler–Bernoulli beams under static loads in presence of discontinuities in the curvature and in the slope functions are the object of this study. Both types of discontinuities are modelled as singularities, superimposed to a uniform flexural stiffness, by making use of distributions such as unit step and Dirac's delta functions. A non-trivial generalisation to multiple different singularities of an integration procedure recently proposed by the authors for a single singularity is presented in this paper. The proposed integration procedure leads to closed form solutions, dependent on boundary conditions only, which do not require enforcement of continuity conditions along the beam span. It is however shown how, from the solution of the clamped-clamped beam, by considering suitable singularities at boundaries in the flexural stiffness model, responses concerning several boundary conditions can be recovered. Furthermore, solutions in terms of deflection of the beam are obtained for imposed displacements at boundaries providing the so called shape functions. The above mentioned shape functions can be adopted to insert beams with singularities as frame elements in a finite element discretisation of a frame structure. Explicit expressions of the element stiffness matrix are provided for beam elements with multiple singularities and the reduction of degrees of freedom with respect to classical finite element procedures is shown. Extension of the proposed procedure to beams with axial displacement and vertical deflection discontinuities is also presented.  相似文献   

15.
Summary An integral equation formulation for the dynamic biaxial response of slightly curved elastic-viscoplastic beams is presented in the context of a multiple field analysis, which takes into account the geometrically nonlinear influence of moderately large deflections. Materials are considered in the regime of rate-dependent plasticity and are subjected to accumulated ductile damage. The latter is modeled by the growth of voids in the plastic zones of an initially porous elastic material. Inelastic defects of the material are considered in the linear elastic background beam by a second imposed strain field (eigenstrains). Geometrically nonlinear effects of large deflections under conditions of immovable supports are approximately taken into account. By inspection, they render another “strain field” to be imposed on the linear background beam. Superposition applies in the linear elastic background in an incremental formulation. Linear methods, as those based on Green's functions and Duhamel's integral, are used to account for the given loads as well as for the resultants of the imposed strain fields. The intensity and the distribution of the imposed strain fields are calculated incrementally in a time-stepping procedure. They are determined by the constitutive law and by application of the nonlinear geometric relations. The numerical procedure resulting from the multiple fields in the elastic background is illustrated for two cases: (1) a preloaded viscoplastic beam of rectangular cross section is subjected to oblique flexural vibrations when forced by a sinusoidal load, and (2) an I-beam with a prescribed initial curvature is severely impacted and thus driven into the plastic regime. Accepted for publication 22 November 1996  相似文献   

16.
Wave propagation analysis of a nanobeam made of functionally graded magneto-electro-elastic materials with rectangular cross section rest on Visco-Pasternak foundation is studied in this paper. For modeling the axial, rotation and transverse deformations, Timoshenko beam model is used. Fundamental magneto-electro-elastic equations of the model are derived for a general functionally graded beam excited to electric and magnetic potentials. Surface elasticity is employed for more confident modeling the behavior of nanobeam. Using Hamilton principle and calculation of kinetic and strain energies, the equations of motion are derived. Considering the harmonic wave propagation of infinite domain yields characteristic equation of the system in terms of different parameters of model. The effects of different parameters such as non-homogeneous index, wave number and residual surface stress are investigated on the different phase velocities corresponding to modes of deformation. One can find that increasing the non-homogeneous index and wave number leads to decrease in wave propagation phase velocities.  相似文献   

17.
In this paper, a boundary element solution is developed for the nonlinear flexural–torsional dynamic analysis of beams of arbitrary doubly symmetric variable cross section, undergoing moderate large displacements, and twisting rotations under general boundary conditions, taking into account the effect of rotary and warping inertia. The beam is subjected to the combined action of arbitrarily distributed or concentrated transverse loading in both directions and to twisting and/or axial loading. Four boundary-value problems are formulated with respect to the transverse displacements, to the axial displacement, and to the angle of twist and solved using the Analog Equation Method, a Boundary Element Method (BEM) based technique. Application of the boundary element technique yields a system of nonlinear coupled Differential–Algebraic Equations (DAE) of motion, which is solved iteratively using the Petzold–Gear Backward Differentiation Formula (BDF), a linear multistep method for differential equations coupled with algebraic equations. Numerical examples of great practical interest including wind turbine towers are worked out, while the influence of the nonlinear effects to the response of beams of variable cross section is investigated.  相似文献   

18.
在长12 m的无缝不锈钢直管中,通过改变初始点火能量,探究了点火能对封闭管道内丙烷-空气混合气体爆炸传播特性和激波对管壁动态加载的影响。结果表明,初始点火能对预混气体爆炸火焰传播规律以及管壁的动态响应有显著影响:点火能越大,爆炸越剧烈,爆炸压力峰值压力和管壁最大应变就越大,且压力波和管壁应变的发展一致。火焰在传播过程中受到管道末端反射波的作用会发生短暂熄灭和复燃;管壁承受冲击波加载,应变信号主要分布在0~781.25 Hz,管壁最大应变率大于10-3 s-1,实验工况下管壁应变属动态响应。  相似文献   

19.
The purpose of this paper is to obtain analytically minimum-weight plastic designs of simply supported continuous beams subjected to one single moveable load. The designs are established for ideal sandwich beams made of a rigid perfectly plastic material, on the basis of the sufficient condition for minimum-weight given by Save and Prager (6). The obtained minimum-weight designs are compared with plastic designs of beams with constant cross section.  相似文献   

20.
When using a classical SHPB (split Hopkinson pressure bar) set-up, the useful measuring time is limited by the length of the bars, so that the maximum strain which can be measured in material testing applications is also limited. In this paper, a new method with no time limits is presented for measuring the force and displacement at any station on a bar from strain or velocity measurements performed at various places on the bar. The method takes the wave dispersion into account, as must inevitably be done when making long time measurements. It can be applied to one-dimensional and single-mode waves of all kinds propagating through a medium (flexural waves in beams, acoustic waves in wave guides, etc.). With bars of usual sizes, the measuring time can be up to 50 times longer than the time available with classical methods. An analysis of the sensitivity of the results to the accuracy of the experimental data and to the quality of the wave propagation modelling was also carried out. Experimental results are given which show the efficiency of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号