首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为了预测三维编织C/C复合材料的弯曲失效行为,基于多尺度渐进展开理论,结合细观渐进损伤模型,建立了三维编织C/C复合材料宏细观多尺度分析模型。通过商业有限元软件ABAQUS用户子程序UMAT的二次开发,在宏观结构有限元分析中实时调用细观单胞模型进行细观渐进损伤分析,实现了宏细观尺度之间交互式信息传递和多尺度损伤模拟。利用上述模型对三点弯曲载荷下三维编织C/C复合材料梁的渐进损伤和失效过程进行了模拟,预测了梁的载荷-挠度曲线和弯曲强度,并与实验结果进行了对比分析,验证了基于多尺度方法的三维编织C/C复合材料弯曲强度预测模型的有效性,为此类材料及结构失效分析提供了一种手段。  相似文献   

2.
文章提出一种有限元压缩方法,可以简单、高效地创建具有较高增强体体积分数的复合材料代表性体胞单元(RVE),其具体步骤如下:(1)基于随机顺序吸附(RSA)法生成具有较低增强体体积分数的复合材料周期性RVE;(2)在周期性边界条件约束下,采用有限元方法压缩前述创建的低增强体体积分数复合材料周期性RVE,得到有限元网格格式、具有较高增强体体积分数的复合材料周期性RVE;(3)通过后处理提取得到的高增强体体积分数复合材料周期性RVE中所有增强体的位置(和取向),进而创建CAD格式的复合材料周期性RVE.采用提出的有限元压缩方法,成功创建了体积分数达50.0%的球形增强体复合材料的周期性RVE.采用最近邻距离的概率分布函数、最近邻取向角的累积概率分布函数、Ripleys-K函数和对关联函数对创建的复合材料周期性RVE中球形增强体分布规律进行了统计分析,发现创建的复合材料周期性RVE中球形增强体空间随机分布.基于创建的复合材料周期性RVE和有限元均质法预测了不同类型的球形增强体复合材料的弹性性能,并与实验测试和双夹杂模型预测的结果进行了对比,验证了创建的复合材料周期性RVE及提出的有限元压缩方法...  相似文献   

3.
论文以碳纤维复合材料层压板为研究对象,发展了一种模拟复合材料层压板冲击及冲击后压缩的一体化数值分析方法.基于Puck 失效准则和粘聚区模型描述层内损伤与层间损伤,分别采用基于断裂能的双线性型、函数型以及直接折减型等不同损伤折减方法构建了层内损伤预测与演化模型;建立了碳纤维复合材料冲击后压缩数值仿真模型,通过开展不同能量冲击后压缩试验,验证了所发展的数值分析方法的有效性;研究结果表明,采用Puck 失效准则和基于断裂能的双线性损伤演化模型预测冲击后压缩强度时具有较高精度.  相似文献   

4.
针对复合材料与金属连接的一种新型连接形式-毛化接头,建立了其在拉伸载荷作用下的失效模式与破坏载荷的宏-细观预测模型。首先根据毛刺的分布选择合适的代表体积元,建立毛刺层单胞模型,施加周期性边界条件,通过有限元分析得到毛刺层的平均刚度参数。其次,基于累积损伤理论预测毛刺层的单胞强度,分析毛刺层的失效机理。最后,将毛刺层的等效材料参数赋予接头整体模型,预测接头的抗拉强度及失效模式。预测结果与试验值吻合良好。分析结果表明,毛化接头的承载能力和失效模式与毛刺的密度高度、搭接面积等因素密切相关,通过参数设计可获得较高的承载能力。  相似文献   

5.
李龙彪 《力学学报》2014,46(5):710-729
纤维增强陶瓷基复合材料初始加载到疲劳峰值应力时, 基体出现裂纹, 纤维/基体界面发生脱粘. 在疲劳载荷作用下, 纤维相对基体在界面脱粘区往复滑移使得陶瓷基复合材料出现疲劳迟滞现象. 建立了纤维陶瓷基复合材料疲劳迟滞回线细观力学模型, 采用断裂力学方法确定了初始加载纤维/基体界面脱粘长度、卸载界面反向滑移长度与重新加载新界面滑移长度, 分析了4种不同界面滑移情况的疲劳迟滞回线. 假设正交铺设与编织陶瓷基复合材料疲劳迟滞回线主要受0°铺层、轴向纱线内纤维/基体界面滑移的影响, 预测了单向、正交铺设与编织陶瓷基复合材料在不同峰值应力与不同循环的疲劳迟滞回线, 与试验结果吻合.   相似文献   

6.
纤维增强陶瓷基复合材料初始加载到疲劳峰值应力时, 基体出现裂纹, 纤维/基体界面发生脱粘. 在疲劳载荷作用下, 纤维相对基体在界面脱粘区往复滑移使得陶瓷基复合材料出现疲劳迟滞现象. 建立了纤维陶瓷基复合材料疲劳迟滞回线细观力学模型, 采用断裂力学方法确定了初始加载纤维/基体界面脱粘长度、卸载界面反向滑移长度与重新加载新界面滑移长度, 分析了4种不同界面滑移情况的疲劳迟滞回线. 假设正交铺设与编织陶瓷基复合材料疲劳迟滞回线主要受0°铺层、轴向纱线内纤维/基体界面滑移的影响, 预测了单向、正交铺设与编织陶瓷基复合材料在不同峰值应力与不同循环的疲劳迟滞回线, 与试验结果吻合.  相似文献   

7.
二维三轴编织复合材料的弹性性能分析   总被引:3,自引:0,他引:3  
提出了二维三轴编织复合材料的几何模型,模型考虑了纤维束的弯曲扭转状态及空间交错特性等几何元素。基于体积平均法,建立了预测二维三轴编织复合材料弹性性能的理论分析模型;通过引入更普遍适用的周期性位移边界条件,结合二维三轴编织复合材料的细观实体结构,建立了分析其力学性能的有限元模型。两种模型预测结果均与试验结果吻合,证明了方法的合理有效性。分析了材料受载下的细观应力分布,并讨论了编织参数对材料性能的影响。研究表明,二维三轴编织复合材料轴向性能得到了增强,应力分布更均匀,编织角以及纤维体积含量对材料弹性性能影响较大。  相似文献   

8.
压电复合材料粘接界面断裂有限元模拟   总被引:1,自引:1,他引:0  
根据数字化FRMM(Fix-Ratio Mix-Mode)断裂试验,得到了压电复合材料试件的断裂韧性和位移及应变场。本文在试验的基础上,通过非线性有限元软件ABAQUS及用户子程序UMAT进行了模拟分析,采用基于损伤力学的粘聚区模型(CZM)对压电复合材料界面的起裂和脱胶扩展进行了分析,并与VCCT方法进行了比较。计算得到的荷载位移曲线更接近于试验结果,但在裂纹扩展路径上的吻合需要对粘聚区法则进一步修正。通过进一步对CZM参数进行分析,表明界面粘结强度和界面刚度对计算结果的影响很大。研究结果表明,粘聚区模型可以很好地表征压电复合材料弱粘接界面脱胶断裂问题。  相似文献   

9.
本文基于炭黑填充橡胶复合材料具有周期性细观结构的假设,采用一种新的、改进的随机序列吸附算法建立了三维多球颗粒随机分布式代表性体积单元,并通过细观力学有限元方法对炭黑颗粒填充橡胶复合材料的力学行为进行了模拟仿真。研究结果表明:采用改进的随机序列吸附算法所建立的模型更加便于有限元离散化;模拟中周期性边界条件的约束,使其更加符合实际约束的真实情况;炭黑填充橡胶复合材料的有效模量明显高于未填充橡胶材料,并随着炭黑颗粒所占体积分数的增加而增大;通过比较发现,本文提出的多球颗粒随机分布式三维数值模型对复合材料的应力-应变行为和有效弹性模量的预测结果与实验结果吻合良好,证实了该模型能够用于炭黑颗粒增强橡胶基复合材料有效性能的模拟分析。  相似文献   

10.
本文基于各向异性修正偶应力理论建立了只含一个尺度参数的Reddy型复合材料层合板的自由振动模型。同见诸于文献的细观尺度Kirchhoff薄板偶应力模型相比,本文提出的新模型能够更精确的预测细观尺度下的中、厚层合板的自振频率。基于Hamilton原理推导了细观尺度下Reddy型复合材料层合板的运动微分方程以及边界条件,并以正交铺设的四边简支复合材料层合方板为例进行了解析求解,分析了尺度参数对自振频率的影响并对比了Kirchhoff、Mindlin和Reddy等三种板模型计算结果的异同。算例结果表明本文所给出的模型能够捕捉到复合材料层合板自由振动问题的尺度效应。另外,在细观尺度下Kirchhoff板模型所预测的自振频率相对于Mindlin板模型和Reddy板模型总是过高,且越接近厚板三者的差别就越大,这与经典理论中三种板模型的对比情况是一致的。  相似文献   

11.
金属材料层裂破坏的内聚力模型   总被引:1,自引:0,他引:1  
本文把内聚力单元嵌入到连续介质有限元单元之间,构建了一个层裂破坏的内聚力模型,以计及层裂破坏过程中能量耗散行为。采用该模型对平板撞击条件下的20号钢层裂实验进行了数值模拟研究,重点讨论了内聚力模型特征参数对计算结果的影响规律。研究结果表明采用指数型损伤演化行为的内聚力模型可以较好地描述弹塑性材料层裂破坏过程中的非线性能量耗散行为。利用一发实测自由面速度波剖面对计算结果进行对比校准,可确定内聚力模型特征参数。该特征参数可同样成功地预示不同撞击速度下的层裂实验,获得的模拟曲线与实验曲线之间符合程度很好,特别是自由面速度“回跳”后波形振荡周期和幅值与实验结果非常接近。这表明了内聚力模型在描述层裂过程中能量耗散行为方面具有较好适用性,并且不难由简单实验标定相关的特征参数。  相似文献   

12.
Previous experimental investigations [Shang, F., Kitamura, T., Hirakata, H., Kanno, I., Kotera, H., Terada, K., 2005. Experimental and theoretical investigations of delamination at free edge of interface between piezoelectric thin films on a substrate. International Journal of Solids and Structures 42 (5–6) 1729–1741] have demonstrated that multilayered Cr/PZT/PLT/Pt/Ti thin films deposited on single-crystal silicon substrates are delaminated along the interface between Cr and PZT layers in a brittle manner. This study starts with a model based on the cohesive zone concept and carries out numerical simulations to check the fracture behavior of this interfacial delamination. Three types of cohesive zone models (CZMs) are adopted, including the exponential, bilinear, and trapezoidal models. Characteristic CZM parameters are extracted through comparisons with experimental results. The simulation results show that (i) cohesive strength and work of separation are the dominating parameters in the CZMs; (ii) the bilinear CZM more suitably describes this brittle interfacial delamination; and (iii) in comparison with typical several mm-thick film/coating materials, the fracture energy of this weak Cr/PZT interface is quite low. Our study demonstrates the applicability of CZM in characterizing the interface fracture behavior of film materials with micrometer thicknesses.  相似文献   

13.
A three-dimensional multi-fibre multi-layer micromechanical finite element model was developed for the prediction of mechanical behaviour and damage response of composite laminates. Material response and micro-scale damage mechanism of cross-ply, [0/90]ns, and angle-ply, [±45]ns, glass-fibre/epoxy laminates were captured using multi-scale modelling via computational micromechanics. The framework of the homogenization theory for periodic media was used for the analysis of the proposed ‘multi-fibre multi-layer representative volume element’ (M2RVE). Each layer in M2RVE was represented by a unit cube with multiple randomly distributed, but longitudinally aligned, fibres of equal diameter and with a volume fraction corresponding to that of each lamina (equal in the present case). Periodic boundary conditions were applied to all the faces of the M2RVE. The non-homogeneous stress–strain fields within the M2RVE were related to the average stresses and strains by using Gauss’ theorem in conjunction with the Hill–Mandal strain energy equivalence principle. The global material response predicted by the M2RVE was found to be in good agreement with experimental results for both laminates. The model was used to study effect of matrix friction angle and cohesive strength of the fibre–matrix interface on the global material response. In addition, the M2RVE was also used to predict initiation and propagation of fibre–matrix interfacial decohesion and propagation at every point in the laminae.  相似文献   

14.
15.
The coupled thermomechanical numerical analysis of composite laminates with bridged delamination cracks loaded by a temperature gradient is described. The numerical approach presented is based on the framework of a cohesive zone model. A traction-separation law is presented which accounts for breakdown of the micromechanisms responsible for load transfer across bridged delamination cracks. The load transfer behavior is coupled to heat conduction across the bridged delamination crack. The coupled crack-bridging model is implemented into a finite element framework as a thermomechanical cohesive zone model (CZM). The fundamental response of the thermomechanical CZM is described. Subsequently, bridged delamination cracks of fixed lengths are studied. Values of the crack tip energy release rate and of the crack heat flux are computed to characterize the loading of the structure. Specimen geometries are considered that lead to crack opening through bending deformation and buckling delamination. The influence of critical mechanical and thermal parameters of the bridging zone on the thermomechanical delamination behavior is discussed. Bridging fibers not only contribute to crack conductance, but by keeping the crack opening small they allow heat flux across the delamination crack to be sustained longer, and thereby contribute to reduced levels of thermal stresses. The micro-mechanism based cohesive zone model allows the assessment of the effectiveness of the individual mechanisms contributing to the thermomechanical crack bridging embedded into the structural analysis.  相似文献   

16.
Crack initiation and crack growth resistance in elastic plastic materials, dominated by crack-tip plasticity are analyzed with the crack modeled as a cohesive zone. Two different types (exponential and bilinear) of cohesive zone models (CZMs) have been used to represent the mechanical behavior of the cohesive zones. In this work, it is suggested that different forms of CZMs (e.g., exponential, bilinear) are the manifestations of different micromechanisms-based inelastic processes that participate in dissipating energy during the fracture process and each form is specific to each material system. It is postulated that the total energy release rate comprises the plastic dissipation rate in the bounding material and the separation energy rate within the fracture process zone, the latter is determined by CZMs. The total energy release rate then becomes a function of the material properties (e.g., yield strength, strain hardening exponent) and cohesive properties of the fracture process zone (e.g., cohesive strength and cohesive energy), and the form of cohesive zone model (CZM) that determines the rate of energy dissipation in the forward and wake regions of the crack. The effects of material parameters, cohesive zone parameters as well as the form/shape of CZMs in predicting the crack growth resistance and the size of plastic zone (SPZ) surrounding the crack tip are systematically examined. It is found that in addition to the cohesive strength and cohesive energy, the form (shape) of the traction–separation law of CZM plays a very critical role in determining the crack growth resistance (R-curve) of a given material. It is further observed that the shape of the CZM corresponds to inelastic processes active in the forward and wake regions of the crack, and has a profound influence on the R-curve and SPZ.  相似文献   

17.
A model to predict the effective stiffness of woven fabric composite materials is presented. Taking advantage of the inherent periodicity of woven fabric architecture, periodic microstructure theory is used at the mesoscale for the case of a two-phase heterogeneous material with multiple periodic inclusions. For plain weave fabrics, the representative volume element (RVE) is discretized into fiber/matrix bundles and the pure matrix regions that surround them. The surfaces of the fiber/matrix bundles are fit with sinusoidal equations using two approaches. The first is based on measurements taken from photomicrographs of composite specimens and the second is based on an idealized representation of the plain weave structure. Three-dimensional sinusoidal surfaces are generated from the face equations and weave shape for the real and idealized cases in order to mathematically describe the fiber/matrix bundle regions, which are treated as unidirectional composites. Model results from the idealized geometry are compared to experimental data from the literature and show good agreement, including interlaminar material properties. From a comparison of the real and idealized geometry results for similar material RVE dimensions, it is seen that the model is capable of predicting significant changes in the in-plane material properties from slight mismatch in the fiber/matrix bundle shape and crimp, which can be captured using the geometric surfaces generated from photomicrograph measurements.  相似文献   

18.
In this study we investigate the effect of imperfect (not perfectly bonded) interfaces on the stiffness and strength of hierarchical polycrystalline materials. As a case study we consider a honeycomb cellular polycrystal used for drilling and cutting tools. The conclusions of the analysis are, however, general and applicable to any material with structural hierarchy. Regarding the stiffness, generalized expressions for the Voigt and Reuss estimates of the bounds to the effective elastic modulus of heterogeneous materials are derived. The generalizations regard two aspects that are not included in the standard Reuss and Voigt estimates. The first novelty consists in considering finite thickness interfaces between the constituents undergoing damage up to final debonding. The second generalization consists of interfaces not perpendicular or parallel to the loading direction, i.e., when isostress or isostrain conditions are not satisfied. In this case, approximate expressions for the effective elastic modulus are obtained by performing a computational homogenization approach. In the second part of the paper, the homogenized response of a representative volume element (RVE) of the honeycomb cellular polycrystalline material with one or two levels of hierarchy is numerically investigated. This is put forward by using the cohesive zone model (CZM) for finite thickness interfaces recently proposed by the authors and implemented in the finite element program FEAP. From tensile tests we find that the interface nonlinearity significantly contributes to the deformability of the material. Increasing the number of hierarchical levels, the deformability increases. The RVE is tested in two different directions and, due to different orientations of the interfaces and Mixed Mode deformation, anisotropy in stiffness and strength is observed. Stiffness anisotropy is amplified by increasing the number of hierarchical levels. Finally, the interaction between interfaces at different hierarchical levels is numerically characterized. A condition for scale separation, which corresponds to the independence of the material tensile strength from the properties of the interfaces in the second level, is established. When this condition is fulfilled, the material microstructure at the second level can be efficiently replaced by an effective homogeneous continuum with a homogenized stress–strain response. From the engineering point of view, the proposed criterion of scale separation suggests how to design the optimal microstructure of a hierarchical level to maximize the material tensile strength. An interpretation of this phenomenon according to the concept of flaw tolerance is finally presented.  相似文献   

19.
The accuracy of an adopted cohesive zone model (CZM) can affect the simulated fracture response significantly. The CZM has been usually obtained using global experimental response, e.g., load versus either crack opening displacement or load-line displacement. Apparently, deduction of a local material property from a global response does not provide full confidence of the adopted model. The difficulties are: (1) fundamentally, stress cannot be measured directly and the cohesive stress distribution is non-uniform; (2) accurate measurement of the full crack profile (crack opening displacement at every point) is experimentally difficult to obtain. An attractive feature of digital image correlation (DIC) is that it allows relatively accurate measurement of the whole displacement field on a flat surface. It has been utilized to measure the mode I traction-separation relation. A hybrid inverse method based on combined use of DIC and finite element method is used in this study to compute the cohesive properties of a ductile adhesive, Devcon Plastic Welder II, and a quasi-brittle plastic, G-10/FR4 Garolite. Fracture tests were conducted on single edge-notched beam specimens (SENB) under four-point bending. A full-field DIC algorithm was employed to compute the smooth and continuous displacement field, which is then used as input to a finite element model for inverse analysis through an optimization procedure. The unknown CZM is constructed using a flexible B-spline without any “a priori” assumption on the shape. The inversely computed CZMs for both materials yield consistent results. Finally, the computed CZMs are verified through fracture simulation, which shows good experimental agreement.  相似文献   

20.
A work-of-fracture method using three-point bend beam (3PBB) specimen, commonly employed to determine the fracture energy of concrete, is adapted to evaluate the mode-I cohesive fracture of fiber reinforced plastic (FRP) composite–concrete adhesively bonded interfaces. In this study, a bilinear damage cohesive zone model (CZM) is used to simulate cohesive fracture of FRP–concrete bonded interfaces. The interface cohesive process damage model is proposed to simulate the adhesive–concrete interface debonding; while a tensile plastic damage model is used to account for the cohesive cracking of concrete near the bond line. The influences of the important interface parameters, such as the interface cohesive strength, concrete tensile strength, critical interface energy, and concrete fracture energy, on the interface failure modes and load-carrying capacity are discussed in detail through a numerical finite element parametric study. The results of numerical simulations indicate that there is a transition of the failure modes controlling the interface fracture process. Three failure modes in the mode-I fracture of FRP–concrete interface bond are identified: (1) complete adhesive–concrete interface debonding (a weak bond), (2) complete concrete cohesive cracking near the bond line (a strong bond), and (3) a combined failure of interface debonding and concrete cohesive cracking. With the change of interface parameters, the transition of failure modes from interface debonding to concrete cohesive cracking is captured, and such a transition cannot be revealed by using a conventional fracture mechanics-based approach, in which only an energy criterion for fracture is employed. The proposed cohesive damage models for the interface and concrete combined with the numerical finite element simulation can be used to analyze the interface fracture process, predict the load-carrying capacity and ductility, and optimize the interface design, and they can further shed new light on the interface failure modes and transition mechanism which emulate the practical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号