首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Codimension two bifurcation of a vibro-bounce system   总被引:1,自引:0,他引:1  
A three-degree-of-freedom vibro-bounce system is considered. The disturbed map of period one single-impact motion is derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a three-dimensional one, and the normal form map associated with Hopf-flip bifurcation is obtained. Dynamical behavior of the system, near the point of codimension two bifurcation, is investigated by using qualitative analysis and numerical simulation. It is found that near the point of Hopf-flip bifurcation there exists not only Hopf bifurcation of period one single-impact motion, but also Hopf bifurcation of period two double-impact motion. The results from simulation show that there exists an interesting torus doubling bifurcation near the codimension two bifurcation. The torus doubling bifurcation makes the quasi-periodic attractor associated with period one single-impact motion transform to the other quasi-periodic attractor represented by two attracting closed circles. The torus bifurcation is qualitatively different from the typical torus doubling bifurcation occurring in the vibro-impact systems. Different routes from period one single-impact motion to chaos are observed by numerical simulation.The project supported by the National Natural Science Foundation of China (10172042, 50475109) and the Natural Science Foundation of Gansu Province Government of China (ZS-031-A25-007-Z (key item))  相似文献   

2.
3.
In this paper, a biochemical model with the impulsive perturbations is considered. By using the Floquet theorem for the impulsive equation and small-amplitude perturbation skills, we see that the boundary-periodic solution ([(x)\tilde](t),0)(\tilde{x}(t),0) is locally stable if some conditions are satisfied. In a certain limiting case, it is shown that a nontrivial periodic solution emerges via a supercritical bifurcation. By numerical simulation, we can show that the system presents rich dynamics, including periodic solutions, quasi-periodic oscillations, period doubling cascades, periodic halving cascades, symmetry bifurcations, and chaos.  相似文献   

4.
冲击消振器的概周期碰振运动分析   总被引:5,自引:0,他引:5  
建立了冲击消振器对称周期运动的Poincar啨映射方程 ,讨论了对称周期运动的稳定性与局部分岔。通过数值仿真研究了冲击消振器在非共振、弱共振和强共振条件下的概周期碰振运动及其向混沌的转迁过程。  相似文献   

5.
对挤压油膜阻尼器-滑动轴承-转子系统的稳定性及分岔行为进行了研究,由于该动力系统为一强非线性系统,具有复杂的非线性现象。本文采用Floquet理论对其周期解的稳定性进行了计算分析:随着系统参数的变化,该系统将出现稳态周期解、准周期分岔、倍周期分岔。文中也对系统平衡点的稳定性进行了分析,讨论了其Hopf分岔行为  相似文献   

6.
Homoclinic bifurcation at resonant eigenvalues   总被引:10,自引:0,他引:10  
We consider a bifurcation of homoclinic orbits, which is an analogue of period doubling in the limit of infinite period. This bifurcation can occur in generic two parameter vector fields when a homoclinic orbit is attached to a stationary point with resonant eigenvalues. The resonance condition requires the eigenvalues with positive/negative real part closest to zero to be real, simple, and equidistant to zero. Under an additional global twist condition, an exponentially flat bifurcation of double homoclinic orbits from the primary homoclinic branch is established rigorously. Moreover, associated period doublings of periodic orbits with almost infinite period are detected. If the global twist condition is violated, a resonant side switching occurs. This corresponds to an exponentially flat bifurcation of periodic saddle-node orbits from the homoclinic branch.Partially supported by DARPA and NSF.Partially supported by the Deutsche Forschungsgemeinschaft and by Konrad-Zuse-Zentrum für Informationstechnik Berlin.  相似文献   

7.
The Duffing oscillators are widely used to mathematically model a variety of engineering and physical systems. A computational analysis has been initiated to explore the effects of nonstationary excitations on the response of the softening Duffing oscillator in the region of the parameter space where the period doubling sequences occur. Significant differences between the stationary and nonstationary responses have been uncovered: (i) the stationary transitions from T to 2T, from 2T to 4T ... etc. branches at the stationary period doubling bifurcations are smooth, in nonstationary cases they exhibit jumps to the near stationary branches at the values of the control parameters greater than those for the stationary; this phenomenon is called penetration (delay or memory). The lengths of the penetrations is being compressed to zero with the increasing number of the iterations. (ii) The stationary and nonstationary responses eventually settle on different limit motions, the nonstationary has modulated components. (iii) The jumps appearing in the stationary bifurcation diagram at 2T from the upper to the lower branches of the (x, f) and (x, ), i.e., (displacement-forcing amplitude) and (displacement-forcing frequency), diagrams have been replaced by continuous transition in the nonstationary diagram climinating thus the discontinuity. Apart from these differences, some specific characteristic nonstationary responses have been observed not encountered in the stationary cases: (iv) the appearance of the window in the nonstationary limit bifurcation diagrams. (v) The nonstationary limit motions located on the upper (lower) branches of the (x, f) or (x, ) diagrams expanded rapidly to the lower (upper) branches. (vi) The stationary and nonstationary bifurcation diagrams are extremely sensitive to the initial conditions, manifested by the mirror reflections, called the flipflop phenomenon. (vii) The nonstationary limit motion has been characterized by a complex phase portrait, the appearance of the Cantor-like set of the limit motion bifurcation plot, and continuous spectral density. For the purpose of comparison, a stationary period doubling sequence T, 2T,..., 2 n T,... stationary limit motion, ST which is known to be chaotic has been determined. A far reaching observation has been made in the process of this study: the determination of the nonstationary bifurcations, their branches and limit motions, has been independent of the calculations of the stationary ones, indicating, thus, the existence of an independent class of nonstationary (time varying) dynamics.  相似文献   

8.
IntroductionRotor-bearings systems applied widely in industry are nonlinear dynamic systems of multi-degree-of-freedom.Synchronous vibration is its typical motion under unavoidable unbalance.Subharmonic,quasi-periodic and chaotic vibrations,caused by the …  相似文献   

9.
碰摩裂纹转子轴承系统的周期运动稳定性及实验研究   总被引:1,自引:0,他引:1  
根据碰摩裂纹耦合故障转子轴承系统的非线性动力学方程,利用求解非线性非自治系统周期解的延拓打靶法,研究了系统周期运动的稳定性。研究发现,小偏心量下系统周期运动发生Hopf分岔,大偏心量下系统周期运动发生倍周期分岔,偏心量的加大使周期解的稳定性明显降低;系统碰摩间隙变小,碰摩影响了油膜涡动的形成,使失稳转速有所提高;裂纹深度的加大降低了系统周期运动的稳定性。本文的研究为转子轴承系统的安全稳定运行提供了理论参考。  相似文献   

10.
The bifurcation and chaos of a clamped circular functionally graded plate is investigated. Considered the geometrically nonlinear relations and the temperature-dependent properties of the materials, the nonlinear partial differential equations of FGM plate subjected to transverse harmonic excitation and thermal load are derived. The Duffing nonlinear forced vibration equation is deduced by using Galerkin method and a multiscale method is used to obtain the bifurcation equation. According to singularity theory, the universal unfolding problem of the bifurcation equation is studied and the bifurcation diagrams are plotted under some conditions for unfolding parameters. Numerical simulation of the dynamic bifurcations of the FGM plate is carried out. The influence of the period doubling bifurcation and chaotic motion with the change of an external excitation are discussed.  相似文献   

11.
建立了考虑轴承和隔振垫弹性的非对称支承转子实验台系统的非线性动力学碰摩模型, 应用数值分析的方法对其进行研究. 以转速为分叉参数,结合Poincar\'{e}截面和自相关函数图等, 分析隔振垫刚度对系统分叉与混沌动力学行为的影响. 分析结果表明, 隔振垫刚度对系统动力学行为有较大影响, 系统通向混沌的道路主要是阵发性分叉和倍周期分叉. 实验分析所得到的系统运动性质与数值模拟结果一致.  相似文献   

12.
A nonlinear time-varying dynamic model for a multistage planetary gear train, considering time-varying meshing stiffness, nonlinear error excitation, and piece-wise backlash nonlinearities, is formulated. Varying dynamic motions are obtained by solving the dimensionless equations of motion in general coordinates by using the varying-step Gill numerical integration method. The influences of damping coefficient, excitation frequency, and backlash on bifurcation and chaos properties of the system are analyzed through dynamic bifurcation diagram, time history, phase trajectory, Poincaré map, and power spectrum. It shows that the multi-stage planetary gear train system has various inner nonlinear dynamic behaviors because of the coupling of gear backlash and time-varying meshing stiffness. As the damping coefficient increases, the dynamic behavior of the system transits to an increasingly stable periodic motion, which demonstrates that a higher damping coefficient can suppress a nonperiodic motion and thereby improve its dynamic response. The motion state of the system changes into chaos in different ways of period doubling bifurcation, and Hopf bifurcation.  相似文献   

13.
In this article, an eco-epidemiological system with weak Allee effect and harvesting in prey population is discussed by a system of delay differential equations. The delay parameter regarding the time lag corresponds to the predator gestation period. Mathematical features such as uniform persistence, permanence, stability, Hopf bifurcation at the interior equilibrium point of the system is analyzed and verified by numerical simulations. Bistability between different equilibrium points is properly discussed. The chaotic behaviors of the system are recognized through bifurcation diagram, Poincare section and maximum Lyapunov exponent. Our simulation results suggest that for increasing the delay parameter, the system undergoes chaotic oscillation via period doubling. We also observe a quasi-periodicity route to chaos and complex dynamics with respect to Allee parameter; such behavior can be subdued by the strength of the Allee effect and harvesting effort through period-halving bifurcation. To find out the optimal harvesting policy for the time delay model, we consider the profit earned by harvesting of both the prey populations. The effect of Allee and gestation delay on optimal harvesting policy is also discussed.  相似文献   

14.
弹性转子-滑动轴承系统稳定性分析   总被引:7,自引:0,他引:7  
对一人考虑不平衡力和非线性油膜力的弹性转子 -轴承系统 ,用数值方法研究其稳定性和油膜失稳运动 (自激振动 )特性 ;推导出转子受冲击的运动模型 ,并分析了冲击对系统稳定性的影响规律。  相似文献   

15.
DC-DC开关功率变换器的非线性动力学行为研究   总被引:6,自引:0,他引:6  
DC-DC开关功率变换器是一种典型的分段光滑动力学系统, 在一定的工作和参数条件下, 系统会出现各种分岔如倍周期分岔、Hopf分岔、边界碰撞分岔和混沌运动. 系统评述了DC-DC开关功率变换器的非线性动力学行为的研究进展;介绍了离散非线性映射、分段线性模型、平均值模型等3种建模方法;分析了这种电路系统中的分岔特点及通向混沌的途径与机制;结合我们的研究工作, 讨论了对这种电路系统进行混沌控制的必要性及相关策略;最后, 从应用的角度提出了未来的若干研究方向.   相似文献   

16.
In this paper, a discrete-time predator–prey model with Crowley–Martin functional response is investigated based on the center manifold theorem and bifurcation theory. It is shown that the system undergoes flip bifurcation and Neimark–Sacker bifurcation. An explicit approximate expression of the invariant curve, caused by Neimark–Sacker bifurcation, is given. The fractal dimension of a strange attractor and Feigenbaum’s constant of the model are calculated. Moreover, numerical simulations using AUTO and MATLAB are presented to support theoretical results, such as a cascade of period doubling with period-2, 4, 6, 8, 16, 32 orbits, period-10, 20, 19, 38 orbits, invariant curves, codimension-2 bifurcation and chaotic attractor. Chaos in the sense of Marotto is also proved by both analytical and numerical methods. Analyses are displayed to illustrate the effect of magnitude of interference among predators on dynamic behaviors of this model. Further the chaotic orbit is controlled to be a fixed point by using feedback control method.  相似文献   

17.
针对磁场环境中周期外载作用下轴向运动导电条形板的非线性振动及混沌运动问题进行研究。应用改进多尺度法对横向磁场中条形板的强非线性振动问题进行求解,得到超谐波共振下系统的分岔响应方程。根据奇异性理论对非线性动力学系统的普适开折进行分析,求得含两个开折参数的转迁集及对应区域的拓扑结构分岔图。通过数值算例,分别得到以磁感应强度、轴向拉力、激励力幅值和激励频率为分岔控制参数的分岔图和最大李雅普诺夫指数图,以及反映不同运动行为区域的动力学响应图形,讨论分岔参数对系统呈现的倍周期和混沌运动的影响。结果表明,可通过相应参数的改变实现对系统复杂动力学行为的控制。  相似文献   

18.
研究磁场环境中轴向运动导电薄板磁弹性动力学及分岔特性。考虑几何非线性因素,在给出薄板运动的动能、应变能及外力虚功的基础上,应用哈密顿变分原理,得到磁场中轴向运动薄板的非线性磁弹性振动方程,并给出洛伦兹电磁力的确定形式。针对横向磁场环境中条形板共振特性进行分析,应用多尺度法和奇异性理论,得到稳态运动下的分岔响应方程以及普适开折对应的转迁集。通过算例,分别得到以磁感应强度、轴向运动速度和激励力为分岔控制参数的分岔图、最大李雅普诺夫指数图和庞加莱映射图等计算结果,讨论不同分岔参数对系统呈现的倍周期和混沌运动的影响。结果表明,通过相应参数的改变可实现对系统复杂动力学行为的控制。  相似文献   

19.
Coherent structures in countercurrent axisymmetric shear flows   总被引:1,自引:0,他引:1  
The dynamical behaviors of coherent structures in countercurrent axisymmetric shear flows are experimentally studied.The forward velocity U1 and the velocity ratio R=(U1-U2)/(U1+U2),where U2 denotes the suction velocity,are consldered as the control parameters.Two kinds of vortex structures,i.e.,axisymmetric and helical structures,were discovered with respect to different reginmes in the R versus U1 diagram .In the case of U1 rangjing from 3 to 20m/s and R from 1 to 3,the axisymmetric structures plan an important role.Based on the dynamical behaviors of axisymmetric structures,a critical forward velocity U1cr=6.8m/s was defined,subsequently,the subcritical velocity regime:U1>U1cr and the supercritical velocity regime:U1<U1er,In the subcritical velocity regine,the flow system contains shear layer self-excited oscillations in a certain range of the velocity ratio with respect to any forward velocity.In the supercritical velocity regime,the effect of the velocity ratio could be explained by the relative movement and the spatial evolution of the axisymmetric structure undergoes the following stages:(1) Kelvin-Helmholtz instability leading to vortex rolling up,(2) first time vortex agglomeration.(3) jet colunn self-excited oscillation,(4) shear layer self-excited oscillation,(5)“ordered tearing“,(6) turbulence in the case of U1<4m/s (the “ordered tearing“ does not exist when U1>4m/s),correspondingly,the spatial evolution of the temporal asymptotic behavior of a dynamical system can be described as follows:(1) Hopt bifurcation,(5) chaos(“weak turbulence“)in the case of U1<4m/s(superharmonic bifurcation does not exist when U1>4m/s).The proposed new terms,superharmonic and reversed superbarmonic bifurcations,are characterized of the frequency doubling rather than the period doubling.A kind of unfamiliar vortices referred to as the helical structure was discovered experimentally when the forward velocity around 2m/s and the velocity range from 1.1 to 2.3,There are two base frequencies contained in the flow system and they could coexist as indicated by the Wigner-Ville-Distribution and the temporal asymptotic behavior of the dynamical system corresponding to the helical vortex could be described as 2-torus as indicted by the 3D reconstructed phase trajectory and correlation dimension.The scenario of the spatial evolution of helical structures could be described as follows:the jet column is separated into two parts at a certain spatial location and they entangle each other to form the helical vortex until the occurrence of those separated jet columns to reconnect further downstream with the result that the flow system evolves into turbulence in a catastrophic form.Correspondingly,the dynamical system evolves directly into 2-tiorus through the supercritical Hopf bifurcation followed by a transition from a quasi-periodic attractor to a strange attractor.In the case of U1=2m/s,the parametric evolution of the temporal asymptotic behavior of the dynamical system as the velocity ratio increases from 1 to 3 could be described as follows:(1)2-torus(Hopf bifurcation),(2) limit cycle(reversed Hopf bifurcation),(3) strange attractor (subbarmonic bifurcation).  相似文献   

20.
In this paper we present the results of a bifurcation study of the weak electrolyte model for nematic electroconvection, for values of the parameters including experimentally measured values of the nematic I52. The linear stability analysis shows the existence of primary bifurcations of Hopf type, involving normal as well as oblique rolls. The weakly nonlinear analysis is performed using four globally coupled complex Ginzburg–Landau equations for the waves' envelopes. If spatial variations are ignored, these equations reduce to the normal form for a Hopf bifurcation with O(2)×O(2) symmetry. A rich variety of stable waves, as well as more complex spatiotemporal dynamics is predicted at onset. A temporal period doubling route to spatiotemporal chaos, corresponding to a period doubling cascade towards a chaotic attractor in the normal form, is identified. Eckhaus stability boundaries for travelling waves are also determined. The methods developed in this paper provide a systematic investigation of nonlinear physical mechanisms generating the patterns observed experimentally, and can be generalized to any two-dimensional anisotropic systems with translational and reflectional symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号