首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A numerical investigation of the structure of the vortical flowfield over delta wings at high angles of attack in longitudinal and with small sideslip angle is presented. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics that are dominated by the effect of the breakdown of the leading-edge vortices. The methods that analyze the flowfield structure quantitatively were given by using flowfield data from the computational results. In the region before the vortex breakdown, the vortex axes are approximated as being straight line. As the angle of attack increases, the vortex axes are closer to the root chord, and farther away from the wing surface. Along the vortex axes, as the adverse pressure gradients occur, the axial velocity decreases, that is, A is negativee, so the vortex is unstable, and it is possible to breakdown. The occurrence of the breakdown results in the instability of lateral motion for a delta wing, and the lateral moment diverges after a small perturbation occurs at high angles of attack. However, after a critical angle of attack is reached the vortices breakdown completely at the wing apex, and the instability resulting from the vortex breakdown disappears.  相似文献   

2.
The numerical investigation has been performed to explore the feasibility of vortex control by leading edge sucking excitation on a delta wing. The results reveal that the flow on the upper surface of the delta wing changes significantly in a wide range of the angle of attack. For the vortical flow at moderate angle of attack, the secondary and tertiary vortices are weakened or suppressed, and the total lift is almost unchanged. For the stalled flow at high angle of attack, the leading edge concentrated vortex is recovered, and the lift is enhanced with increasing suction rate. For the bluff-body flow at even high angles of attack, the lift can still be improved. The concentrated vortex disappears on the upper surface, and the load increment is nearly unchanged along the chordwise direction. The project supported by the National Natural Science Foundation of China (19802018).  相似文献   

3.
采用数值计算方法对亚音速三角翼纵向及带有小侧滑情况下的流场结构和气动力特性进行了计算。文中给出了三角翼大迎角纵向情况下气动力、机翼前缘分离涡轴线位置和旋涡破裂位置随迎角的变化规律,以及带有横侧小扰动和小侧滑情况下流场结构的非对称性对气动力的影响。计算结果表明与实验结果符合较好。  相似文献   

4.
基于雨燕翅膀的仿生三角翼气动特性计算研究   总被引:1,自引:1,他引:0  
张庆  叶正寅 《力学学报》2021,53(2):373-385
针对低雷诺数微型飞行器的气动布局, 设计出类似雨燕翅膀的一组具有不同前缘钝度的中等后掠($\varLambda =50^{\circ}$)仿生三角翼. 为了定量对比研究三角翼后缘收缩产生的气动效应, 设计了一组具有同等后掠的普通三角翼. 为了深入研究仿生三角翼布局的前缘涡演化特性以及总体气动特性, 采用数值模拟方法详细地探索了低雷诺数($Re=1.58\times 10^{4})$流动条件下前缘涡涡流结构和气动力随迎角的变化规律. 分析结果表明, 前缘钝度和后缘收缩对仿生三角翼前缘涡的涡流强度和涡破裂位置有显著影响. 相对于钝前缘来说, 尖前缘使仿生三角翼上下表面的压力差增大, 涡流强度也更大, 增升作用也更显著. 相对于普通三角翼构型, 仿生三角翼的前缘斜切使其阻力更大, 但后缘的收缩使涡破裂位置固定在此位置, 因此整个上翼面保持低压, 总的升力更大. 由于小迎角时升力增大更明显, 因此仿生三角翼的气动效率在小迎角时明显大于普通三角翼. 这些结论对于揭示鸟类的飞行机理以及未来微型仿生飞行器的气动布局设计具有重要的研究价值.   相似文献   

5.
Seven hole probe measurement of leading edge vortex flows   总被引:1,自引:0,他引:1  
This paper discusses the use of a seven-hole probe on measurements of leading edge vortices of highly sweep delta wing planforms. Intrusive probe data taken with the pressure probe were compared with non-intrusive measurements made with laser Doppler anemometry system. In addition to probe size, the natural position of breakdown and the sweep angle of the wing are also factors in determining sensitivity of the flow to probe interference. At low angles of attack vortex breakdown does not occur in the vincinity of the model and the seven hole probe was found to yield reasonably accurate measurements. When the angle of attack of the model was increased so that vortex breakdown was near the trailing edge, introducing the probe over the wing would cause the breakdown position to move ahead of the probe. However, when breakdown naturally occurred ahead of the mid-chord of the wing the vortices were found to be less sensitive to a probe placed behind the breakdown point. Vortex breakdown on a lower swept wing is found to be more sensitive to interference. Near the breakdown region, seven hole probe measurement is less accurate due to a combination of probe interference and flow reversal.  相似文献   

6.
王晋军  秦永明 《实验力学》2001,16(4):372-377
本文应用染色液流动显示技术对后缘偏转喷流情况下76°/40°双三角翼前缘涡破裂位置的变化进行了观测,实验结果表明偏转喷流主要推迟与喷流方向相同一侧前缘涡的破裂,而使另一侧前缘涡破裂略有提前.随着喷流偏转角度的增大,喷流使两前缘涡破裂位置差逐渐增大.另外,随着模型攻角的增大,前缘涡涡核与双三角翼翼面的夹角逐渐增大,导致偏转喷流的作用逐渐减弱.  相似文献   

7.
Ruimin Sun 《力学快报》2011,1(3):032001
The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel. The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance, respectively. The evolution of the flow structures and aerodynamics with a ground height were analyzed. The vorticity of tip vortices was found to reduce with the decreasing of the ground height, and the position of vortex-core moved gradually to the outboard of the wing tip. Therefore, the down-wash flow induced by the tip vortices was weakened. However, vortex breakdown occurred as the wing lowered to the ground. From the experimental results of aerodynamics, the maximum lift-to-drag ratio was observed when the angle of attack was 2.5° and the ground clearance was 0.2.  相似文献   

8.
 The effects of oscillating leading-edge flaps on leading-edge vortices and vortex breakdown were investigated for a delta wing with upward-deflected flaps. The variation of breakdown location revealed hysteresis loops. The time-averaged breakdown location over one cycle may move upstream or downstream compared to the quasi-steady case, depending on the amplitude of flap oscillations and angle of attack. Measurements of the phase-averaged velocity upstream of breakdown did not reveal any correlation to the response of breakdown location. The effect of oscillating flaps is largest when the breakdown location is near the trailing-edge region in the static case. Received: 2 February 1997/Accepted: 7 April 1997  相似文献   

9.
常思源  肖尧  李广利  田中伟  崔凯 《力学学报》2022,54(10):2760-2772
高压捕获翼新型气动布局在高超声速设计状态下具有较好的气动性能, 新升力面的引入使其在亚声速条件下也具有较大的升力, 但在亚声速下的稳定特性还有待研究. 基于高压捕获翼气动布局基本原理, 在机身-三角翼组合体上添加单支撑和捕获翼, 设计了一种参数化高压捕获翼概念构型. 以捕获翼和机体三角翼上/下反角为设计变量, 采用均匀试验设计、计算流体力学数值计算方法及Kriging代理模型方法, 研究了0° ~ 10°攻角状态下不同翼反角对高压捕获翼构型亚声速气动特性的影响, 重点分析了升阻特性、纵向和横航向稳定性的变化规律以及流场涡结构等. 结果表明, 小攻角状态下翼反角对升阻比的影响比大攻角更加显著, 捕获翼上反时, 升阻比略微增大, 下反则升阻比减小; 三角翼上反时, 升阻比减小, 下反则升阻比先略微增大后缓慢减小; 翼反角对纵向稳定性的总体影响较小, 捕获翼上反会稍微提高纵向稳定性, 而三角翼上反则会降低纵向稳定性; 捕获翼或三角翼上反都会增强横向稳定性, 下反则减弱横向稳定性, 但大攻角状态时, 三角翼上反角过大对提升横向稳定性作用有限; 捕获翼上反航向稳定性增强, 下反航向稳定性则减弱, 而三角翼下反对提升航向稳定性的整体效果比上反更加显著.   相似文献   

10.
Experiments on the unsteady nature of vortex breakdown over delta wings   总被引:2,自引:0,他引:2  
 Vortex breakdown location over delta wings is not steady and exhibits fluctuations along the axis of the vortices. Experiments on the nature and source of these fluctuations were carried out. Spectral analysis and other statistical concepts were used to quantify the unsteady behaviour of vortex breakdown location obtained from flow visualization. The fluctuations consist of quasi-periodic oscillations and high-frequency low amplitude displacements. The quasi-periodic oscillations are due to an interaction between the vortices, which cause the antisymmetric motion of breakdown locations for left and right vortices. The oscillations are larger and more coherent as the time-averaged breakdown locations get closer to each other as angle of attack or sweep angle is varied. The frequency of this organized motion is much smaller than the frequency of any other known instabilities. On the other hand, the most probable frequency for the high-frequency small-amplitude fluctuations of breakdown location is in the same range as the frequency of Kelvin–Helmholtz instability of the separated shear layer. A mechanism for the interaction between the vortices causing the oscillations of breakdown location was proposed. When a splitter plate was placed in the symmetry plane of the wing, the large amplitude quasi-periodic oscillations of breakdown location were suppressed. Received: 10 March 1998 / Accepted: 27 October 1998  相似文献   

11.
Flow visualization was used to study the effects of a vectored trailing edge jet on the leading edge vortex breakdown of a 65° delta wing. The experimental results indicated that there is little effect of the jet on the leading edge vortex breakdown when the angle of the vectored jet is less than 10°. With the increase of the vectored angle ß, the effect of the jet on the flow becomes stronger, i.e., the jet delays the leading edge vortex breakdown in the direction of the vectored jet, and accelerates breakdown of the other leading edge vortex. Moreover, the effect of the jet control tends to be weaker with the angle of attack.  相似文献   

12.
李立 《力学与实践》2017,39(1):18-24
提出一种基于非结构混合网格和有限体积法的有效计算策略,对第二期国际涡流试验项目(second international vortex flow experiment,VFE-2)的尖前缘65°三角翼在马赫数0.4,迎角20.3°,雷诺数2×10~6条件下的亚音速复杂流场结构进行数值模拟,重点探讨了基于计算数据进行该类型复杂涡系干扰表面和空间流场关键特征提取和数据可视化问题.通过与相关试验类比,建立了与先进试验流动显示技术相比拟的定性和定量分析方法,为三角翼这类复杂流场结构的精细分析奠定了技术基础.采用上述方法,细致分析了亚音速三角翼的大迎角复杂旋涡流场结构,得到了与试验一致的结论.研究证实:在大迎角条件下,三角翼流动物理复杂,黏性效应耦合严重,只有通过N-S方程计算才能准确地捕捉主涡和二次涡的发展.  相似文献   

13.

The vast majority of research works on low aspect ratio rotating wings report that, at high angle of attack, the leading edge vortex that forms on the upper surface of the wing is stable. This ‘trick’ is used by insects and auto-rotating seeds, for example, to achieve the desirable amount of lift. Yet, a few experimental studies suggest that leading edge vortices might be unstable under similar, low Rossby number, conditions. While it is unclear what causes vortex shedding in these studies, the present communication explores the sensitivity of leading edge vortex attachment to perturbations of the rotating speed and demonstrates that shedding can be triggered even for very small perturbations, corresponding to wing tip displacements lower than 1% of the wing chord.

  相似文献   

14.
The transonic flowfields and vortex-breakdown over a slender wing with the angle of attack from 10° to 28° are studied numerically, and the emphasis is on the secondary separation and the charateristics of vortex-breakdown. The results indicated that: (a) TVD schemes have strong capability for capturing vortices in three-dimensional transonic separated flow at large angle of attack. (b) The development of secondary vortices is more complex than that of leading-edge ones, and is affected by wing's configuration, angle of attack and compressibility simultaneously, and the effect of compressibility is more severe at low angle of attack. (c) The starting angle of attack for vortex-breakdown (when vortex bursting point crosses trailing-edge) is about 18° forM∞=0.85, then the bursting point moves upstream quickly with increasing angle of attack. (d) At α=24°, breakdown occurs over most part of upper side, and the wing begins to stall. Therefore, there is a large lag of angle of attack between the beginning of vortex-breakdown and the stall of the wing. (e) This lag increase with the decreasing of Mach number.  相似文献   

15.
A detailed investigation of the velocity and vorticity fields of a pair of vortices growing over a 75°-sweep delta wing is carried out through LDV measurements of three components of velocity and vorticity. Data are obtained along one of the vortices. The wing is undergoing a ramp-like pitch-up motion. The evolution of the flow field in four planes normal to the free-stream velocity is captured at 100 time instants through the wing motion. The delta wing is pitched through angles of attack ranging from 28° to 68°. From the velocity data at each incidence, the corresponding vorticity field is calculated. Hysteresis effects on vortex development and breakdown are studied through axial velocity and vorticity contours. The topologies of streamlines and vortex lines are compared with the corresponding topologies of the steady case. It is found that vortex breakdown can be detected first by a drastic reduction of the axial velocity. This phenomenon is developing in a non-axisymmetric fashion, beginning at the inboard side of the vortex. This is followed by a reduction of the axial vorticity component and finally by a reversal of the azimuthal vorticity component.This work was supported by the Air Force Office of Scientific Research, Project No. AFOSR-91-0310 and was monitored by Major Daniel Fant.  相似文献   

16.
文章采用标准k-ω SST湍流模型和动网格技术, 实现了绕俯仰振荡NACA66水翼非定常流动结构与水动力特性的数值模拟, 并基于有限域涡量矩理论定量表征了局部旋涡结构对水翼动力特性的影响. 研究结果表明: 在水翼升程阶段, 当攻角较小时, 层流向湍流的转捩点由水翼尾缘向前缘移动; 在较大攻角时, 顺时针尾缘涡?TEV在水翼吸力面上生成并向前缘发展, 同时与吸力面上的顺时针前缘涡?LEV融合发展为附着在整个吸力面上的新前缘涡?LEV, 新的?LEV与逆时针尾缘涡+TEV相互作用直至完全脱落, 直接导致了水翼的动力失速, 在回程阶段, 绕振荡水翼的流场结构逐渐由湍流转变为层流. 基于有限域涡量矩理论的定量分析发现, 有限域内附着的?LEV和?TEV提供正升力, 当?LEV发展覆盖整个吸力面时对升力的贡献最大, 占总升力近50%, 而+TEV提供负升力. 同时发现, 有限域内各旋涡内部的不同区域提供的升力有正有负; 而逸出有限域的旋涡内部不同区域提供的升力方向均保持一致, 其中顺时针涡提供正升力, 而逆时针涡提供负升力. 在失速阶段, 域外旋涡整体对升力贡献较小且存在小幅波动, 体现了流动的非定常性.   相似文献   

17.
In order to investigate the breakdown of vortices generated by the leading edge of delta wings, LDA-measurements have been performed in the flow on the suction side of a delta wing of aspect ratio A = 2. The measurements describe the growth of the vortex along the leading edge and reveal a certain radial structure upstream of the breakdown point. Moreover they shed light on the mechanism responsible for the onset of vortex breakdown on the suction side of a wing.

The occurrence of the breakdown phenomenon on a delta wing may be prevented or at least retarded by the use of spanwise blowing jets. The interaction of vortex and jets giving rise to these effects will also be discussed with the help of measured velocity profiles.  相似文献   


18.
Leading-edge vortex formation and breakdown have been measured over a periodically plunging non-slender delta wing at a high angle of attack, using a three-dimensional particle-tracking method. A very rare type of vortex breakdown in the form of a double helix has been captured in the phase-averaged flow at a specific phase of the oscillation cycle.  相似文献   

19.
The effects of a steady angle of attack on the nonlinear aeroelastic response of a delta wing model to a periodic gust have been studied. For the theoretical analysis, a three-dimensional time-domain vortex lattice aerodynamic model and a reduced order aerodynamic technique were used and the structure was modelled using von Karman plate theory that allows for geometric strain–displacement nonlinearities in the delta wing structure. Also, an experimental investigation has been carried out in the Duke wind tunnel using a rotating slotted cylinder gust generator and an Ometron VPI 4000 Scanning Laser Vibrometer measurement system to measure deflections (velocities) of a delta wing test model. The fair to good quantitative agreement between theory and experiment verifies that the present analytical approach has reasonable accuracy and good computational efficiency for nonlinear gust response analysis in the time-domain. The results also contribute to a better physical understanding of the nonlinear aeroelastic response of a delta wing model to gust loads when the steady angle of attack is varied.  相似文献   

20.
The aerodynamic forces and flow structure of a model insect wing is studied by solving the Navier-Stokes equations numerically. After an initial start from rest, the wing is made to execute an azimuthal rotation (sweeping) at a large angle of attack and constant angular velocity. The Reynolds number (Re) considered in the present note is 480 (Re is based on the mean chord length of the wing and the speed at 60% wing length from the wing root). During the constant-speed sweeping motion, the stall is absent and large and approximately constant lift and drag coefficients can be maintained. The mechanism for the absence of the stall or the maintenance of large aerodynamic force coefficients is as follows. Soon after the initial start, a vortex ring, which consists of the leading-edge vortex (LEV), the starting vortex, and the two wing-tip vortices, is formed in the wake of the wing. During the subsequent motion of the wing, a base-to-tip spanwise flow converts the vorticity in the LEV to the wing tip and the LEV keeps an approximately constant strength. This prevents the LEV from shedding. As a result, the size of the vortex ring increases approximately linearly with time, resulting in an approximately constant time rate of the first moment of vorticity, or approximately constant lift and drag coefficients. The variation of the relative velocity along the wing span causes a pressure gradient along the wingspan. The base-to-tip spanwise flow is mainly maintained by the pressure-gradient force. The project supported by the National Natural Science Foundation of China (10232010)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号