首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The effects of oscillating leading-edge flaps on leading-edge vortices and vortex breakdown were investigated for a delta wing with upward-deflected flaps. The variation of breakdown location revealed hysteresis loops. The time-averaged breakdown location over one cycle may move upstream or downstream compared to the quasi-steady case, depending on the amplitude of flap oscillations and angle of attack. Measurements of the phase-averaged velocity upstream of breakdown did not reveal any correlation to the response of breakdown location. The effect of oscillating flaps is largest when the breakdown location is near the trailing-edge region in the static case. Received: 2 February 1997/Accepted: 7 April 1997  相似文献   

2.
The aerodynamics of thin, flat-plate wings of various planforms (rectangular, elliptical and Zimmerman) have been studied in free-to-roll experiments in a wind tunnel. Non-zero trim angles at low angles of attack, self-induced roll oscillations with increasing angle of attack and even autorotation in some cases were observed. The rectangular wings with round leading-edge had non-zero trim angles at low incidences due to the asymmetric development of the three-dimensional separation bubble at these low Reynolds numbers. With increasing angle of attack, the bubble increases in length and once reattachment is lost, large amplitude roll oscillations develop. The Strouhal number of the roll oscillations is of the order of 10−2, which is in the same range as those expected for small aircraft experiencing atmospheric gusts. Velocity measurements revealed that variations in the strength of the vortices drove the rolling motion. At the mean roll angle, because of the time lag in the strength of the vortices, an asymmetric flow is generated, which results in a net rolling moment in the direction of the rolling motion.  相似文献   

3.
The effect of time-delayed feedback and fast harmonic excitation (FHE) on stationary periodic vibration and quasi-periodic responses in a parametric and self-excited weakly nonlinear oscillator is analyzed in this paper. The method of direct partition of motion and two stages of multiple scales analysis are conducted to obtain analytical approximation for quasi-periodic oscillation envelopes and frequency-locking area near primary resonance. A parameter study shows that, in the absence or the presence of high-frequency excitation, time-delayed feedback may reduce significantly the amplitude and the envelopes of quasi-periodic oscillations leading to a quasi synchronization of the response over the whole frequency range around the resonance. The results presented for the parameters tested agree well with results obtained by numerical simulation.  相似文献   

4.
Time-resolved Particle-Image Velocimetry (PIV) has been used to study mode competition and transient behaviour in the wake of a cylinder experiencing Vortex-Induced Vibrations (VIV) in the streamwise direction. The cylinder response regime contained two branches, occurring above and below the onset of synchronisation between the wake and the cylinder motion (lock-in). During the first branch, the wake exhibited both the S-I mode (in which two vortices are shed simultaneously per vibration cycle) and the alternate A-II mode (similar to the well known von Kármán vortex street). An extended PIV data set acquired in this region revealed mode switching between the S-I and A-II modes. A criterion based on Proper-Orthogonal Decomposition was developed to identify which mode was dominant as a function of time. The A-II mode was found to be dominant for over 90% of the instantaneous fields examined, while the S-I mode appeared to be more unstable.Symmetrically shed vortices were found to rearrange downstream into an alternate structure in which the wake was no longer synchronised to the cylinder motion. The dominant frequency of transverse velocity fluctuations was measured throughout the wake in order to study the effects of this breakdown in more detail. For the majority of the wake, the fluctuations occurred at the Strouhal frequency, while in a region in the near wake the fluctuations occurred at the frequency of the cylinder motion. It is thought that during the first response branch vortices are formed at the cylinder response frequency, but tend to quickly rearrange downstream into an alternate structure which is no longer synchronised to the cylinder motion. As a result, the fluctuating drag will be synchronised to the structural motion, and is capable of providing positive energy transfer in the apparent absence of lock-in. Finally, the spatial dependence of the frequency of velocity fluctuations throughout the wake is used to explain some of the conflicting results in the literature regarding streamwise VIV, and the implications for the general study of VIV are discussed.  相似文献   

5.
 Considerations for applying LDA to bubbly flows with bubbles about 3 to 4 mm in diameter were investigated by means of detailed experiments in the model geometry of a train of bubbles. Both forward scatter and backscatter LDA were studied. The validity of phase discrimination via burst amplitude was tested and special attention was paid to the impact of bubble interface response to the laser beams. Forward and backscatter measurements can be compared well. In both configurations, predominantly the liquid phase is “seen” by LDA. A bubble itself only leads to a velocity realization in special conditions. In those cases the Doppler shift is determined by the motion of the bubble interface which consists of the motion of the center of gravity of the bubble as well as shape oscillations. In backscatter bubbles only give velocity realizations when their “cheeks” pass through the measuring volume virtually perpendicularly. It is shown that the bubble-caused velocity realization frequency is very low for bubbles of the size used. Phase discrimination on burst amplitude does not hold. In ambient cases such as bubble columns one can assume that only the liquid phase is being studied. Received: 4 May 1998/Accepted: 30 September 1998  相似文献   

6.
Dynamics of ripple bed vortices   总被引:4,自引:0,他引:4  
 This paper presents the results of an experimental investigation into the dynamics of vortices formed by and shed from ripples under oscillatory motion. Particle Image Velocimetry (PIV) was used to acquire detailed velocity measurements at several phases of oscillation for each of four flow conditions: three purely horizontal oscillations and a ‘real’ wave with a vertical velocity component. For each of the flows, the vortices were located in the flow maps and defined at each time-step by their circulations and sizes. These calculated characteristics were compared with the predictions from a discrete-vortex model (DVM) developed at the University of Wales, Bangor. Received: 22 May 1997/Accepted: 29 January 1998  相似文献   

7.
Previous researchers have demonstrated that strong pulsations of the fuel flow rate can significantly reduce the flame length and luminosity of laminar/transitional non-premixed jet flames. The physical mechanisms responsible for these changes are investigated experimentally in acoustically-forced jet flows where the peak velocity fluctuations are up to eight times the mean flow velocity. Both reacting and non-reacting flows were studied and Reynolds numbers, based on the mean flow properties, ranged from 800 to 10,000 (corresponding to peak Reynolds numbers of 1,450–23,000), and forcing frequencies ranged from 290 to 1,140 Hz. Both the first and second organ-pipe resonance modes of the fuel delivery tube were excited to obtain these frequencies. An analysis of the acoustic forcing characteristics within the resonance tube is provided in order to understand the source of the high amplitude forcing. Flow visualization of jets with first resonant forcing confirms the presence of large-scale coherent vortices and strong reverse flow near the exit of the fuel tube. With second-resonant forcing, however, vortices are not emitted from the tube as they are drawn back into the fuel tube before they can fully form. Increased fine-scale turbulence is associated with both resonant cases, but particularly at second resonance. The power spectra of the velocity fluctuations for a resonantly pulsed jet show the presence of an inertial subrange indicating that the flow becomes fully turbulent even for mean-Reynolds-number jets that are nominally laminar. It is shown that these pulsed jet flows exhibit strong similarities to synthetic jets and that the Strouhal number, based on the maximum velocity at the fuel tube exit, is the dominant parameter for scaling these flows. The Strouhal number determines the downstream location where the coherent vortices breakdown, and is found to provide better collapse of flame length data (both current and previous) than other parameters that have been used in the literature.  相似文献   

8.
High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2–3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.  相似文献   

9.
In real flows unsteady phenomena connected with the circumferential non-uniformity of the main flow and those caused by oscillations of blades are observed only jointly. An understanding of the physics of the mutual interaction between gas flow and oscillating blades and the development of predictive capabilities are essential for improved overall efficiency, durability and reliability. In the study presented, the algorithm proposed involves the coupled solution of 3D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite volume difference scheme of Godunov–Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. The blade motion is assumed to be constituted as a linear combination of the first natural modes of blade oscillations, with the modal coefficients depending on time. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. The numerical results for unsteady aerodynamic forces due to stator–rotor interaction are compared with results obtained while taking into account blade oscillations. The mutual influence of both outer flow non-uniformity and blade oscillations has been investigated. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high-frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low-frequency harmonics caused by blade oscillations and flow non-uniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.  相似文献   

10.
 Time-dependent characteristics of wall pressure fluctuations in separated and reattaching flows over a backward-facing step were investigated by means of the continuous wavelet transform. Emphasis was placed on the combination of time-localized analyses of the wavelet transform and multi-point measurements of pressure fluctuations. Synchronized wavelet maps revealed the evolutionary behavior of pressure fluctuations and gave further insight into the modulated nature of large-scale vortical structures. It was found that there exist two modes of shed vortices: one is the global oscillation and the other is the vortex convection. The two alternating modes are synchronized with the flapping frequency component of pressure fluctuations. The flapping motion gives rise to the difference in pressure spectra, indicating more intensive pressure activity during the shrinking period of the recirculation region.  相似文献   

11.
The flow developing in a tightly curved U-bend of square cross section has been investigated experimentally and via numerical simulation. Both long-time averages and time histories of the longitudinal (streamwise) component of velocity were measured using a laser-Doppler velocimeter. The Reynolds number investigated was Re = 1400. The data were obtained at different bend angles, θ, and were confined to the symmetry plane of the bend. At Re = 1400, the flow entering the bend is steady, but by θ = 90° it develops an oscillatory component of motion along the outer-radius wall. Autocorrelations and energy spectra derived from the time histories yield a base frequency of approximately 0.1 Hz for these oscillations. Flow-visualization studies showed that the proximity of the outer-radius wall served to damp the amplitude of the spanwise oscillations.

Numerical simulations of the flow were performed using both steady and unsteady version of the finite-difference elliptic calculation procedure of Humphrey et al. (1977). Although the unsteadiness observed experimentally does not arise spontaneously in the calculations, numerical experiments involving the imposition of a periodic time-dependent perturbation at the inlet plane suggest that the U-bend acts upon the incoming flow so as to damp the amplitude of the imposed oscillation while altering its frequency.

The oscillations observed experimentally, and numerically as a result of the periodic perturbation, have been linked to the formation of Goertler-type vortices of the outer-radius wall in the developing flow. The vortices, which develop as a result of the centrifugal instability of the flow on the outer-radius wall, undergo a further transition to an unsteady regime at higher flow rates.  相似文献   


12.
The interaction of a plane subsonic jet with an acoustic Helmholtz resonator is considered. Visualization of the flow pattern is conducted using a schlieren technique. Oscillations of pressure in the resonator cavity are measured. The dependence of frequency and amplitude of oscillations on the jet velocity is analyzed. A simple closed model of the self-oscillatory process is developed that makes it possible to calculate the frequency and amplitude of the self-oscillations and to determine the intervals within which induction of the proper mode of oscillation occurs. It is shown that the finite amplitude of oscillation is determined primarily by a convolution of vortices in the jet.  相似文献   

13.
One of the most basic examples of fluid-structure interaction is provided by a tethered body in a fluid flow. The tendency of a tethered buoy to oscillate when excited by waves is a well-known phenomenon; however, it has only recently been found that a submerged buoy will act in a similar fashion when exposed to a uniform flow at moderate Reynolds numbers, with a transverse peak-to-peak amplitude of approximately two diameters over a wide range of velocities. This paper presents results for the related problem of two-dimensional simulations of the flow past a tethered cylinder. The coupled Navier–Stokes equations and the equations of motion of the cylinder are solved using a spectral-element method. The response of the tethered cylinder system was found to be strongly influenced by the mean layover angle as this parameter determined if the oscillations would be dominated by in-line oscillations, transverse oscillations or a combination of the two. Three branches of oscillation are noted, an in-line branch, a transition branch and a transverse branch. Within the transition branch, the cylinder oscillates at the shedding frequency and modulates the drag force such that the drag signal is dominated by the lift frequency. It is found that the mean amplitude response is greatest at high reduced velocities, i.e., when the cylinder is oscillating predominantly transverse to the fluid flow. Furthermore, the oscillation frequency is synchronized to the vortex shedding frequency of a stationary cylinder, except at very high reduced velocities. Visualizations of the pressure and vorticity in the wake reveal the mechanisms behind the motion of the cylinder.  相似文献   

14.
A numerical investigation of the structure of the vortical flowfield over delta wings at high angles of attack in longitudinal and with small sideslip angle is presented. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics that are dominated by the effect of the breakdown of the leading-edge vortices. The methods that analyze the flowfield structure quantitatively were given by using flowfield data from the computational results. In the region before the vortex breakdown, the vortex axes are approximated as being straight line. As the angle of attack increases, the vortex axes are closer to the root chord, and farther away from the wing surface. Along the vortex axes, as the adverse pressure gradients occur, the axial velocity decreases, that is, A is negativee, so the vortex is unstable, and it is possible to breakdown. The occurrence of the breakdown results in the instability of lateral motion for a delta wing, and the lateral moment diverges after a small perturbation occurs at high angles of attack. However, after a critical angle of attack is reached the vortices breakdown completely at the wing apex, and the instability resulting from the vortex breakdown disappears.  相似文献   

15.
The influence of nose perturbations on the behaviors of asymmetric vortices over a slender body with a three-caliber ogive nose is studied in this paper. The tests of a nose-disturbed slender body with surface pressure measurement were conducted at a low speed wind tunnel with subcritical Reynolds number of 1×105 at angle of attack α=50°. The experiment results show that the behaviors and structure of asymmetric vortices over the slender body are mainly controlled by manual perturbation on the nose of body as compared with geometrical minute irregularities on the test model from the machining tolerances. The effect of the perturbation axial location on asymmetric vortices is the strongest if its location is near the model apex. There are four sensitive circumferential locations of manual perturbation at which bistable vortices over the slender body are switched by the perturbation. The flowfield near the reattachment line of lee side is more sensitive to the perturbation, because the saddle point to saddle point topological structure in this reattachment flowfield is unstable. Various types of perturbation do not change the perturbation effect on the behaviors of bistable asymmetric vortices. The project supported by the National Natural Science Foundation of China (10172017) and the Foundation of National Key Laboratory of Aerodynamic Design and Research (00JS51.3.2 HK01)  相似文献   

16.
采用数值计算方法对亚音速三角翼纵向及带有小侧滑情况下的流场结构和气动力特性进行了计算。文中给出了三角翼大迎角纵向情况下气动力、机翼前缘分离涡轴线位置和旋涡破裂位置随迎角的变化规律,以及带有横侧小扰动和小侧滑情况下流场结构的非对称性对气动力的影响。计算结果表明与实验结果符合较好。  相似文献   

17.
 An experimental investigation was made to study the aperiodic flow characteristics of the tip vortices generated by one-bladed and two-bladed hovering rotors. Measurements of the tip vortex locations and accompanying aperiodicity statistics were established as a function of vortex age. Velocity field measurements were made using three-component laser Doppler velocimetry. The average amplitude of the aperiodicity was found to be a fraction of the measured viscous core radius, this being approximately 5% of blade chord or about 50% of the core radius for wake ages of less than two rotor revolutions. The aperiodicity appeared isotropic. A numerical analysis of the aperiodicity problem based on convolution with an assumed displacement probability function showed that for this experiment the measured tangential velocities in the tip vortices were underestimated by approximately 20% and the viscous core radii were overestimated by 20%. There was no evidence that the number of blades or the blade passage adversely influenced the aperiodicity of the rotor tip vortices. Received: 22 August 1997/Accepted: 4 February 1998  相似文献   

18.

The regular and chaotic vibrations of a nonlinear structure subjected to self-, parametric, and external excitations acting simultaneously are analysed in this study. Moreover, a time delay input is added to the model to control the system response. The frequency-locking phenomenon and transition to quasi-periodic oscillations via Hopf bifurcation of the second kind (Neimark–Sacker bifurcation) are determined analytically by the multiple time scales method up to the second-order perturbation. Approximate solutions of the quasi-periodic motion are determined by a second application of the multiple time scales method for the slow flow, and then, slow–slow motion is obtained. The similarities and differences between the van der Pol and Rayleigh models are demonstrated for regular, periodic, and quasi-periodic oscillations, as well as for chaotic oscillations. The control of the structural response, and modifications of the resonance curves and bifurcation points by the time delay signal are presented for selected cases.

  相似文献   

19.
Shear layers of a circular cylinder with rotary oscillation   总被引:1,自引:0,他引:1  
The behavior of the separated shear layers and the near wake of a circular cylinder with small-amplitude rotary oscillations (Ω1 = 0.05−0.15 for f f/f o ≤ 1.25) were investigated experimentally at Re = 3,700. Measurements of an unforced cylinder were also made for 2,000 ≤ Re ≤ 10,000 to better understand the effects of rotary oscillations. The results show that the shear-layer vortices formed closer to the cylinder and the distance separating them was found to decrease with cylinder oscillations. The shear-layer frequency, however, increased with increasing forcing frequency f f. The formation-region length l f decreased significantly with increasing f f while decreased to a lesser extent with increasing normalized oscillation amplitude Ω1. The shear layer also diffused to a length L d larger than that of an unforced cylinder, while the l f-L d-Strouhal frequency offsetting mechanism was generally maintained. The near wake was of lower momentum compared to an unforced cylinder, and the transverse velocity fluctuations associated with the unforced vortex-shedding frequency f o always presented a local peak at f f/f o = 0.5, regardless of Ω1 tested.  相似文献   

20.
This paper is the second part of a two-part study of impact interaction of a ship roll motion with one-sided ice barrier. The first part was devoted to analytical and numerical simulations for the case of inelastic impact. The analytical approach was based on Zhuravlev and Ivanov non-smooth coordinate transformations. Extensive numerical simulations were carried out for all initial conditions covered by the ship grazing orbit for different values of excitation amplitude and frequency of external wave-induced roll moment. The basins of attraction of safe operation revealed the coexistence of different response regimes such as non-impact periodic oscillations, modulated impact motion, period added impact oscillations, chaotic impact motion and roll-over dynamics. This part presents an experimental investigation conducted on a small ship model in a tow tank. In particular, the experimental tests reveal complex dynamic response characteristics such as multi-frequency wave motion caused by the wave reflection from the tank end wall. Measured results show a good agreement with the predicted results by for small angles of the barrier relative to the ship unbiased position. However, deviation becomes significant as the angle increases. This deviation is mainly attributed to the uncertainty of the coefficient of restitution, which is found to depend on the velocity of impact in addition to the geometry and material properties of the model and barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号