首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
A set of three-dimensional constitutive equations is proposed for modeling the nonlinear dissipative response of soft tissue. These constitutive equations are phenomenological in nature and they model a number of physical features that have been observed in soft tissue. The equations model the tissue as a composite of a purely elastic component and a dissipative component, both of which experience the same total dilatation and distortion. The stress response of the purely elastic component depends on dilatation, distortion and the stretch of material fibers, whereas the stress response of the dissipative component depends on distortional deformation only. The equations are hyperelastic in the sense that the stress is obtained by derivatives of a strain energy function, and they are properly invariant under superposed rigid body motions. In contrast with standard viscoelastic models of tissues, the proposed constitutive model includes the total deformation rate in evolution equations that can reproduce the observed physical feature that the hysteresis loops of most biological soft tissues are nearly independent of strain rate (Biomechanics, Mechanical Properties of Living Tissues, second ed. (1993)). Material constants are determined which produce good agreement with uniaxial stress experiments on superficial musculoaponeurotic system and facial skin.  相似文献   

3.
An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.  相似文献   

4.
Computational Mechanics of the Heart   总被引:19,自引:0,他引:19  
Finite elasticity theory combined with finite element analysis provides the framework for analysing ventricular mechanics during the filling phase of the cardiac cycle, when cardiac cells are not actively contracting. The orthotropic properties of the passive tissue are described here by a “pole–zero” constitutive law, whose parameters are derived in part from a model of the underlying distributions of collagen fibres. These distributions are based on our observations of the fibrous-sheet laminar architecture of myocardial tissue. We illustrate the use of high order (cubic Hermite) basis functions in solving the Galerkin finite element stress equilibrium equations based on this orthotropic constitutive law and for incorporating the observed regional distributions of fibre and sheet orientations. Pressure–volume relations and 3D principal strains predicted by the model are compared with experimental observations. A model of active tissue properties, based on isolated muscle experiments, is also introduced in order to predict transmural distributions of 3D principal strains at the end of the contraction phase of the cardiac cycle. We end by offering a critique of the current model of ventricular mechanics and propose new challenges for future modellers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
A phenomenological model is proposed for characterizing rate-independent hysteresis exhibited by preconditioned soft tissues. The preconditioned tissue is modeled as an isotropic composite of a hyperelastic component and a dissipative (inelastic) component. Specifically, the constitutive equations are hyperelastic in the sense that the stress is determined by derivatives of a strain energy function. Inelasticity of the dissipative component is controlled by a yield function with different functional forms for the hardening variable during deformation loading and unloading. The constitutive equations proposed in this paper are simple. In particular, they depend on only seven material constants: three controlling the response of the elastic component and the remainder controlling the response of the dissipative component. More importantly, the material constants can be determined to match rather general loading and unloading behavior. It is observed that the hysteretic response of the model compares well with experimental data for passive uniaxial loading/unloading of Manduca muscle. Moreover, the present model treats partial loading and reloading of preconditioned tissue as elastic–plastic response, which is different from the treatment of pseudo-elastic models used in the literature.  相似文献   

6.
Flexible insect wings deform passively under the periodic loading during napping flight. The wing flexibility is considered as one of the specific mechanisms on improving insect flight performance. The constitutive relation of the insect wing material plays a key role on the wing deformation, but has not been clearly understood yet. A viscoelastic constitutive relation model was established based on the stress relaxation experiment of a dragonfly wing (in vitro). This model was examined by the finite element analysis of the dynamic deformation response for a model insect wing under the action of the periodical inertial force in flapping. It is revealed that the viscoelastic constitutive relation is rational to characterize the biomaterial property of insect wings in contrast to the elastic one. The amplitude and form of the passive viscoelastic deformation of the wing is evidently dependent on the viscous parameters in the constitutive relation.  相似文献   

7.
8.
Based on pair functional potentials, Cauchy-Born rule and slip mechanism, a material model assembling with spring-bundle components, a cubage component and slip components is established to describe the elasto-plastic damage constitutive relation under finite deformation. The expansion/shrink, translation and distortion of yield surfaces can be calculated based on the hardening rule and Bauschinger effect defined on the slip component level. Both kinematic and isotropic hardening are included. Numerical simulations and predictions under tension, torsion, and combined tension-torsion proportional/non-proportional loading are performed to obtain the evolution of subsequent yield surfaces and elastic constants and compare with two sets of experimental data in literature, one for a very low work hardening aluminum alloy Al 6061-T6511, and another for a very high work hardening aluminum alloy annealed 1100 Al. The feature of the yield surface in shape change, which presents a sharp front accompanied by a blunt rear under proportional loading, is described by the latent hardening and Bauschinger effect of slip components. Further, the evolution law of subsequent yield surfaces under different proportional loading paths is investigated in terms of their equivalence. The numerical simulations under non-proportional loading conditions for annealed 1100 Al are performed, and the subsequent yield surfaces exhibit mixed cross effect because the kinematic hardening and isotropic hardening follow different evolution tendency when loading path changes. The results of non-proportional loading demonstrate that the present model has the ability to address the issue of complex loading due to the introduction of state variables on slip components. Moreover, as an elasto-plastic damage constitutive model, the present model can also reflect the variation of elastic constants through damage defined on the spring-bundle components.  相似文献   

9.
The contact problem of indentation of a pair of rigid punches with plane bases connected by an elastic beam into the boundary of an elastic half-plane is considered under the conditions of plane strain state. The external load is generated by lumped forces applied to the punches and a uniformly distributed normal load acting on the beam.It is assumed that the contact between the punch and the elastic half-plane can be described by L. A. Galin’s statement, i.e., it is assumed that the adhesion acts in the interior part of each of the contact regions and the tangential stresses obeying the Coulomb law act on their boundaries.With the symmetry taken into account, the problem is stated only for a single punch, and solving this problem is reduced to a system of four singular integral equations for the tangential and normal stresses in the adhesion region and the contact pressure in the sliding zones. The solution of the constitutive system together with three conditions of equilibrium of the system of punches connected by a beam is constructed by direct numerical integration by the method of mechanical quadratures.As a result of the numerical analysis, the contact stress distribution functions were constructed and the values of the sliding zones and the punch rotation angle were determined for various values of the geometric, elastic, and force characteristics.  相似文献   

10.
结构的响应实质上是材料的响应,宏观结构损伤至断裂的发展过程也是材料性质不断演化的结果。构元组集模型从材料的微观物理变形机制出发,基于对泛函势理论和Cauchy-Born准则,抽象出两种构元——弹簧束构元和体积构元。在微观层次上,结构损伤和断裂的实质都是原子间键合力减弱和丧失的结果,而弹簧束构元是同一方向上的原子键的抽象,因此损伤可以通过弹簧束构元的响应曲线来反映。组集两种构元的响应,建立了材料的弹性损伤本构关系,从而能一致描述材料从弹性到损伤、破坏的发展过程。将构元组集模型的本构关系嵌入ABAQUS的用户材料单元子程序UMAT,实现对结构响应的数值模拟。本文模拟了包含中心预制裂纹三点弯曲梁的裂纹扩展过程,并与内聚区模型比较,给出了内聚区模型所假设的应力——位移关系曲线,并从材料损伤演化的角度对材料裂纹扩展过程做出了物理解释。  相似文献   

11.
A fully three dimensional finite-strain damage model for fibrous soft tissue is developed. The model assumes uncoupled contributions for the matrix and collagen fibers, and uncoupled bulk and deviatoric response over any range of deformations. A simple isotropic damage mechanism within the framework of continuum damage mechanics has been used to describe the softening behavior under deformation for the matrix. On the other hand, statistical aspects related to the length distribution of the reinforcing fibers lead to a damage model for the reinforcing material. As a result, a general theoretical framework for constitutive modeling of biological soft tissue with continuum damage is obtained. A theoretical example consisting of a biaxial test of a soft tissue reinforced with two families of collagen fibers has been considered to demonstrate the capabilities of the proposed model and to study the sensitivity to changes in the statistical parameters associated with the reinforcing material. Also, a preliminary numerical example is included to demonstrate the model on a inhomogeneous boundary value problem. Results show that the model is able to capture the typical stress-strain behavior observed in fibrous soft tissue and seems to confirm the soundness of the proposed formulation.  相似文献   

12.
Constitutive modeling of biological tissues plays an important role in the understanding of tissue behavior and the development of synthetic materials for medical and bio-inspired applications. A structural continuum model that incorporates principal structural features of the tissue can potentially provide the link between microstructure and the macroscopic mechanical response of biological tissues. For most soft biological tissues, including arterial walls and skin tissue, the main load-carrying constituent is presumed to be the distributed collagen fibers embedded in a base matrix. It is believed that the organization of the collagen fibers gives rise to the anisotropy of the material. In this paper, a semi-structural constitutive model is proposed to account for planar fiber distributions with more than one distributed planar fiber property. Motivated by histology information of the wing membrane of the bat, a statistical treatment is formulated in this paper to capture the overall effect of the distribution of fiber cross-sectional area and the distribution of the number of fibers. This formulation is suitable for general cases when more than one fiber property varies spatially. Furthermore, this model is a two-dimensional specialization within the framework of a three-dimensional theory, which is different the formulation based on a fundamentally two-dimensional theory.  相似文献   

13.
A new algorithm, which combines the spectral element method with elastic viscous splitting stress (EVSS) method, has been developed for viscoelastic fluid flows in a planar contraction channel. The system of spectral element approximations to the velocity, pressure, extra stress and the rate of deformation variables is solved by a preconditioned conjugate gradient method based on the Uzawa iteration procedure. The numerical approach is implemented on a planar four‐to‐one contraction channel for a fluid governed by an Oldroyd‐B constitutive equation. The behaviour of the Oldroyd‐B fluids in the contraction channel is investigated with various Weissenberg numbers. It is shown that numerical solutions obtained here agree well with experimental measurements and other numerical predictions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
We study the effect of fiber recruitment on the mechanical response of a fiber reinforced non-linearly elastic tube that is both swollen and pressurized. Attention is restricted to cylindrically symmetric tube deformation. The constitutive model permits fibers to support tension, but not compression. While many combinations of pressure and swelling cause all of the fibers to be recruited for load support, both large swelling and large deswelling can give rise to fiber derecruitment at certain locations in the tube. This leads to less channel opening than would be the case if the fibers provided support while contracted. The transition between mechanically active and mechanically inactive fibers can be described in terms of the quasi-static motion of a fiber recruiting interface.  相似文献   

15.
Biological tissues have unique mechanical properties due to the wavy fibrous collagen and elastin microstructure. In inflation, a vessel easily distends under low pressure but becomes stiffer when the fibers are straightened to take up the load. The current microstructural models of blood vessels assume affine deformation, i.e., the deformation of each fiber is assumed to be identical to the macroscopic deformation of the tissue. This uniform-field (UF) assumption leads to the macroscopic (or effective) strain energy of the tissue that is the volumetric sum of the contributions of the tissue components. Here, a micromechanics-based constitutive model of fibrous tissue is developed to remove the affine assumption and to take into consideration the heterogeneous interactions between the fibers and the ground substance. The development is based on the framework of a recently developed second-order homogenization theory, and takes into account the waviness, orientations and spatial distribution of the fibers, as well as the material nonlinearity at finite-strain deformation. In an illustrative simulation, the predictions of the macroscopic stress-strain relation and the statistical deformation of the fibers are compared to the UF model, as well as finite-element (FE) simulation. Our predictions agree well with the FE results, while the UF predictions significantly overestimate. The effects of fiber distribution and waviness on the macroscopic stress-strain relation are also investigated. The present mathematical model may serves as a foundation for native as well as for engineered tissues and biomaterials.  相似文献   

16.
A structural multi-mechanism constitutive equation is developed to describe the nonlinear, anisotropic, inelastic mechanical behavior of cerebral arterial tissue. Elastin and collagen fibers are treated as separate components (mechanisms) of the artery. Elastin is responsible for load bearing at low strain levels while the collagen mechanism is recruited for load bearing at higher strain levels. This work builds on an earlier model in which both the elastin and collagen mechanisms are represented by isotropic response functions [Wulandana, R., Robertson, A.M., 2005. An inelastic multi-mechanism constitutive equation for cerebral arterial tissue. Biomech. Model. Mechan. 4 (4), 235–248]. Here, the anisotropic material response of the wall is introduced through the collagen mechanism which is composed of helically distributed families of fibers. The orientation of these families is described using either a finite number of fiber orientations or a fiber distribution function. The fiber orientation or dispersion function can be prescribed directly from arterial histology data, or, taking a phenomenological approach, based on data fitting from bi-axial measurements. The activation of the collagen mechanism is specified using a new fiber strain based activation criterion. The multi-mechanism constitutive equation is applied to the simple case of cylindrical inflation and material constants are determined based on available inelastic experimental data for cerebral arteries. While the proposed model captures all features of this inelastic data, there is a pressing need for further experiments to refine the model.  相似文献   

17.
This paper is devoted to the formulation of a micromechanics-based constitutive model for granular materials under relatively low confining pressure. The constitutive formulation is performed within the general framework of homogenization for granular materials. However, new rigorous stress localization laws are proposed. Some local constitutive relations are established under the consideration of irreversible thermodynamics. Macroscopic plastic deformation is obtained by considering local plastic sliding in a limit number of families of contact planes. The plastic sliding at each contact plane is described by a non-associated plastic flow rule, taking into account pressure sensitivity and normal dilatancy. Nonlinear elastic deformation related to progressive compaction of contacts is also taken into account. Material softening is described by involving damage process related to degradation of microstructure fabric. The proposed model is applied to some typical granular materials (sands). The numerical predictions are compared with experimental data.  相似文献   

18.
In static wetting on an elastic substrate, force exerted by the liquid–vapour surface tension on a solid surface deforms the substrate, producing a capillary ridge along the contact line. This paper presents a finite element formulation for predicting elastic deformation, close to the static wetting line (with angle of contact=90o and σSV=σSL).The substrate deformation is modelled with the Mooney–Rivlin constitutive law for incompressible rubber‐like solids. At the contact line, a stress singularity is known to arise, due to the surface tension acting on a line of infinitesimal thickness. To relive the stress singularity, either (i) the surface tension is applied over a finite contact region (of macroscopic thickness), or (ii) the solid crease angle is fixed. These two options suggest that normal component of Neumann's triangle law of forces, for the three surface tensions, is not applicable for elastic substrates (as for rigid ones). The vertical displacement of the contact line is a strong function of liquid/vapour surface tension and shear modulus of the solid. Copyright 2004 John Wiley & Sons, Ltd.  相似文献   

19.
In the present work a novel inelastic deformation caused internal dissipation inequality by isotropy is revealed. This inequality has the most concise form among a variety of internal dissipation inequalities, including the one widely used in constitutive characterization of isotropic finite strain elastoplasticity and viscoelasticiy. Further, the evolution term describing the difference between the rate of deformation tensor and the “principal rate” of the elastic logarithmic strain tensor is set, according to the standard practice by isotropy, to equal a rank-two isotropic tensor function of the corresponding branch stress, with the tensor function having an eigenspace identical to the eigenspace of the branch stress tensor. Through that a general form of evolution equation for the elastic logarithmic strain is formulated and some interesting and important results are derived. Namely, by isotropy the evolution of the elastic logarithmic strain tensor is embodied separately by the evolutions of its eigenvalues and eigenprojections, with the evolution of the eigenprojections driven by the rate of deformation tensor and the evolution of the eigenvalues connected to specific material behavior. It can be proved that by isotropy the evolution term in the present dissipation inequality stands for the essential form of the evolution term in the extensively applied dissipation inequality.  相似文献   

20.
This paper presents a new simplified model of the nonlinear dynamic behavior of a steel column subjected to impact loading. In this model, the impacted column, which undergoes large displacement, consists of two rigid bars connected by generalized elastic–plastic hinges where the deformation of the entire steel column as well as the connections is concentrated. The effect of the rest of the structure on the column is modeled by an elastic spring and a point masse both attached to the top end of the column which is also loaded by a compressive force. The plastification of the hinges follows the normality rule with a yield surface that accounts for the interaction between M and N. The latter is described by a super-elliptic yield surface that allows ones to consider a wide range of convex yield criterion by simply varying the roundness factor that affects the shape of the limit surface. By including these features, the model captures both geometry and material nonlinearities. Both the flow rule and the equations of motion are integrated using the midpoint scheme that conserves energy. The non-smooth nature of impact is considered by writing the equations of motion of colliding masses using differential measures. Contact conditions are written in terms of velocity and combined with Newton's law to provide the constitutive law describing interactions between masses during impact. Numerical applications show that the model is able to capture the behavior of a column subjected to impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号