首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
This work studies the free convection heat transfer from a sphere with constant wall temperature embedded in a fluid-saturated porous medium using a thermal non-equilibrium model. The governing equations are transformed into boundary-layer partial differential equations by the coordinate transform, and the obtained governing equations are then solved by the cubic spline collocation method. The temperature distributions for fluid and solid phases are shown for different values of the porosity scaled thermal conductivity ratio, the interphase heat transfer parameter, and the streamwise coordinate. The effects of the porosity scaled thermal conductivity ratio and the interphase heat transfer parameter between solid and fluid phases on the local Nusselt numbers for fluid and solid phases are examined. Results show the local Nusset number for the porous medium can be increased by increasing the porosity scaled thermal conductivity ratio. Moreover, the thermal non-equilibrium effect is more significant for low values of the porosity scaled thermal conductivity ratio or the interphase heat transfer parameter.  相似文献   

2.
This paper uses thermal non-equilibrium model to study transient heat transfer by natural convection of a nanofluid over a vertical wavy surface. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. Three-temperature model is applied to represent the local thermal non-equilibrium among the particle, fluid, and solid-matrix phases. Finite difference method is used to solve the dimensionless governing equations of the problem. The obtained results are displayed in 2D graphs to illustrate the influences of the different physical parameters on local skin-friction coefficient, local Nusselt numbers for fluid, particle and solid phases and local Sherwood number. The results for velocity component, nanoparticle volume fraction, fluid temperature, particle temperature and solid-matrix temperature are presented in 3D graphs as a function of the axial and transverse coordinates. All the obtained results are discussed.  相似文献   

3.
This paper considers the onset of free convection in a horizontal fluid-saturated porous layer with uniform heat generation. Attention is focused on cases where the fluid and solid phases are not in local thermal equilibrium, and where two energy equations describe the evolution of the temperature of each phase. Standard linearized stability theory is used to determine how the criterion for the onset of convection varies with the inter-phase heat transfer coefficient, H, and the porosity-modified thermal conductivity ratio, γ. We also present asymptotic solutions for small values of H. Excellent agreement is obtained between the asymptotic and the numerical results.  相似文献   

4.
M. Z. Salleh  R. Nazar  I. Pop 《Meccanica》2012,47(5):1261-1269
In this paper, the problem of free convection boundary layer flow on a solid sphere in a micropolar fluid with Newtonian heating, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of partial differential equations are solved numerically using an implicit finite-difference scheme. Numerical solutions are obtained for the local wall temperature, the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for different values of the material or micropolar parameter K, the Prandtl number Pr and the conjugate parameter γ are analyzed and discussed.  相似文献   

5.
We study the finite-Péclet number forced convective heat transfer from a uniform temperature sphere placed in otherwise uniform fluid stream within a porous medium. A numerical study is undertaken to determine how the lack of local thermal equilibrium between the phases affects temperature fields of the two phases and the respective rates of heat transfer from the sphere. On the upstream side of the sphere the temperature field extends further from the sphere in the solid phase than it does for the fluid phase, but the opposite is true on the downstream side.  相似文献   

6.
A local thermal non-equilibrium model has been considered for the case of thermally fully developed flow within a constant heat flux tube filled with a porous medium. Exact temperature profiles for the fluid and solid phases are found after combining the two individual energy equations and then transforming them into a single ordinary differential equation with respect to the temperature difference between the solid phase and the wall subject to constant heat flux. The exact solutions for the case of metal-foam and air combination reveal that the local thermal equilibrium assumption may fail for the case of constant heat flux wall. The Nusselt number is presented as a function of the Peclet number, which shows a significant increase due to both high stagnant thermal conductivity and thermal dispersion resulting from the presence of the metal-foam.  相似文献   

7.
An analysis is presented for fully developed laminar convective heat transfer of non-Newtonian power-law fluids in pipes with internal longitudinal fins and uniform outside wall temperature. The governing momentum and energy equations have been solved numerically, with the influence of fin conductance. The distributions of fin temperature, fluid temperature and local heat flux (both at finned and unfinned surfaces) are presented. These are shown to be strongly dependent on finned pipe geometry, fluid flow behavior index and the fin conductance. Values of overall Nusselt number indicated significant heat transfer enhancement over finless pipes. The flow behavior index affects the no. of fins which maximizes the overall Nusselt number.  相似文献   

8.
An analysis is presented to investigate the effects of chemical reaction, thermal radiation and heat generation or absorption on unsteady free convective heat and mass transfer along an infinite vertical porous plate in the presence of a transverse magnetic field and Hall current. The governing partial differential equations are formulated and transformed by using a similarity transformation into a system of ordinary differential equations. The resulting equations are solved numerically using a fourth‐order Runge–Kutta scheme along with the shooting method. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. Numerical results for the velocity, temperature and concentration distributions are shown graphically for different parametric values. The effects of parameters on the local friction coefficients, the Nusselt number and Sherwood numbers are depicted in tabulated form. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the viscoelsatic boundary layer flow and the heat transfer near a vertical isothermal impermeable surface and in a quiescent fluid are examined. The gov-erning equations are formulated and solved numerically using MackCormak’s technique. The results show excellent agreement with previously published results by a compari-sion. Representative results for the velocity and temperature profiles, boundary layer thicknesses, Nusselt numbers, and local skin friction coefficients are shown graphically for different values of viscoelsatic parameters. In general, it is found that the velocities increase inside the hydrodynamic boundary layers and the temperatures decrease inside the thermal boundary layers for the viscoelsatic fluid as compared with the Newtonian fluid due to favorable tensile stresses. Consequently, the coefficients of friction and heat transfer enhance for higher viscoelsatic parameters.  相似文献   

10.
Based on the two-energy equation model, taking into account viscous dissipation due to the interaction between solid skeleton and pore fluid flow, temperature expressions of the solid skeleton and pore fluid flow are obtained analytically for the thermally developing forced convection in a saturated porous medium parallel plate channel, with walls being at constant temperature. It is proved that the temperatures of the two phases for the local thermal nonequilibrium approach to the temperature derived from the one-energy equation model for the local thermal equilibrium when the heat exchange coefficient goes to infinite. The temperature profiles are shown in figures for different dimensionless parameters and the effects of the parameters on the local thermal nonequilibrium are revealed by parameter study.  相似文献   

11.
In this study, we investigate the heat transfer problem in a viscous fluid over an oscillatory infinite sheet with slip condition. The sheet is moved back and forth in its own plane. The derived problem involves a dimensionless parameter indicating the relative magnitude of frequency to sheet stretching rate. A system of non‐linear partial differential equations is solved numerically using the finite‐difference scheme, in which a coordinate transformation is employed to transform the semi‐infinite physical space to a bounded computational domain. The physical features of interesting parameters on the velocity and temperature distributions are shown graphically and discussed. The values of the skin‐friction coefficient and the local Nusselt number are given in tabular form. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
 The present study is devoted to investigate the influences of mass transfer on buoyancy induced flow over vertical flat plate embedded in a non-Newtonian fluid saturated porous medium. The Ostwald–de Waele power-law model is used to characterize the non-Newtonian fluid behavior. Similarity solution for the transformed governing equations is obtained with prescribed variable surface heat flux. Numerical results for the details of the velocity, temperature and concentration profiles are shown on graphs. Excess surface temperature as well as concentration gradient at the wall associated with heat flux distributions, which are entered in tables, have been presented for different values of the power-law index n, buoyancy ration B and the exponent λ as well as Lewis number Le. Received on 26 April 2000  相似文献   

13.
In this paper, we perform a numerical analysis of a two-dimensional axisymmetric problem arising in premixed combustion in a porous burner with integrated heat exchanger. The physical domain consists of two zones, porous and heat exchanger zones. Two dimensional Navier–Stokes equations, gas and solid energy equations, and chemical species transport equations are solved and heat release is described by a multistep kinetics mechanism. The solid matrix is modeled as a gray medium, and the finite volume method is used to solve the radiative transfer equation to calculate the local radiation source/sink in the solid phase energy equation. Special attention is given to model heat transfer between the hot gas and the heat exchanger tube. Thus, the corresponding terms are added to the energy equations of the flow and the solid matrix. Gas and solid temperature profiles and species mole fractions on the burner centerline, predicted 2D temperature fields, species concentrations and streamlines are presented. Calculated results for temperature profiles are compared to experimental data. It is shown that there is good agreement between the numerical solutions and the experimental data and it is concluded that the developed numerical program is an excellent tool to investigate combustion in porous burner.  相似文献   

14.
An analysis is performed to study the effects of the chemical reaction and heat generation or absorption on a steady mixed convection boundary layer flow over a vertical stretching sheet with nonuniform slot mass transfer. The governing boundary layer equations with boundary conditions are transformed into the dimensionless form by a group of nonsimilar transformations. Nonsimilar solutions are obtained numerically by solving the coupled nonlinear partial differential equations using the quasi-linearization technique combined with an implicit finite difference scheme. The numerical computations are carried out for different values of dimensionless parameters to display the distributions of the velocity, temperature, concentration, local skin friction coefficient, local Nusselt number, and local Sherwood number. The results obtained indicate that the local Nusselt and Sherwood numbers increase with nonuniform slot suction, but nonuniform slot injection produces the opposite effect. The local Nusselt number decreases with heat generation and increases with heat absorption.  相似文献   

15.
 The thermal interaction between a heated solid plate and the acoustically driven working fluid was investigated by visualizing and quantifying the temperature fields in the neighbourhood of the solid plate. A combination of holographic interferometry and high-speed cinematography was applied in the measurements. A better knowledge of these temperature fields is essential to develop systematic design methodologies for heat exchangers in oscillatory flows. The difference between heat transfer in oscillatory flows with zero mean velocity and steady-state flows is demonstrated in the paper. Instead of heat transfer from a heated solid surface to the colder bulk fluid, the visualized temperature fields indicated that heat was transferred from the working fluid into the stack plate at the edge of the plate. In the experiments, the thermoacoustic effect was visualized through the temperature measurements. A novel evaluation procedure that accounts for the influence of the acoustic pressure variations on the refractive index was applied to accurately reconstruct the high-speed, two-dimensional oscillating temperature distributions. Received on 22 March 1999  相似文献   

16.
The momentum and heat transfer characteristics associated with the boundary layer on a continuous moving flat surface in a non-Darcian fluid have been investigated exploiting a local similarity solution procedure. The full boundary layer equations, which describe the effects of convective inertia, solid boundary, and porous inertia in addition to the Darcy flow resistance, were solved using novel transformed variables, deduced from a scale analysis on the momentum and energy conservation equations. Details are provided for the effects of convective inertia and porous inertia on the velocity and temperature profiles. The resulting friction and heat transfer characteristics are found to be substantially different from those of forces convection over a stationary flat plate. Furthermore, useful asymptotic expressions for the local Nusselt number are presented in consideration of possible physical limiting conditions.  相似文献   

17.
The paper considers the flow of a power-law fluid past a vertical stretching sheet. Effects of variable thermal conductivity and non-uniform heat source/sink on the heat transfer are addressed. The thermal conductivity is assumed to vary linearly with temperature. Similarity transformation is used to convert the governing partial differential equations into a set of coupled, non-linear ordinary differential equations. Two different types of boundary heating are considered, namely Prescribed power-law Surface Temperature (PST) and Prescribed power-law Heat Flux (PHF). Shooting method is used to obtain the numerical solution for the resulting boundary value problems. The effects of Chandrasekhar number, Grashof number, Prandtl number, non-uniform heat source/sink parameters, wall temperature parameter and variable thermal conductivity parameter on the dynamics are shown graphically in several plots. The skin friction and heat transfer coefficients are tabulated for a range of values of the parameters. Present study reveals that in a gravity affected flow buoyancy effect has a significant say in the control of flow and heat transfer.  相似文献   

18.
In this paper, the thermo-poroelasticity theory is used to investigate the quasi-static response of temperatures, pore pressure, stress, displacement, and fluid flux around a cylindrical borehole subjected to impact thermal and mechanical loadings in an infinite saturated poroelastic medium. It has been reported in literatures that coupled flow known as thermo-osmosis by which flux is driven by temperature gradient, can significantly change the fluid flux in clay, argillaceous and many other porous materials whose permeability coefficients are very small. This study presents a mathematical model to investigate the coupled effect of thermo-osmosis in saturated porous medium. The energy balance equations presented here fulfill local thermal non-equilibrium condition (LTNE) which is different from the local thermal equilibrium transfer theory, accounting for that temperatures of solid and fluid phases are not the same and governed by different heat transfer equations. Analytical solutions of temperatures, pore pressure, stress, displacement, and fluid flux are obtained in Laplace transform space. Numerical results for a typical clay are used to investigate the effect of thermo-osmosis. The effects of LTNE on temperatures, pore pressure, and stress are also studied in this paper.  相似文献   

19.
The aim of this paper is to study the development of mixed convection flow near the stagnation point region over an exponentially stretching/shrinking sheet in nanofluids. The external flow, stretching velocity and wall temperature are assumed to vary as prescribed exponential functions. Using the local similarity method, it has been shown that dual solutions of velocity and temperature exist for certain values of suction/injection, mixed convection, nanoparticle volume fraction and stretching/shrinking parameters. The transformed non-linear ordinary differential equations along with the boundary conditions form a two point boundary value problem and are solved using Shooting method, by converting into an initial value problem. In this method, the system of equations is converted into a set of first order system which is solved by fourth-order Runge–Kutta method. Three different types of nanoparticles, namely copper (Cu), aluminum oxide (Al2O3) and titanium oxide (TiO2) are considered by using water-based fluid with Prandtl number Pr = 6.2. It is also found that the skin friction coefficient and the heat transfer rate at the surface are highest for Copper–water nanofluids as compared to Al2O3. The effect of the solid volume fraction parameter φ of the nanofluids on the heat transfer characteristics is also investigated. The results indicate that dual solutions exist only for shrinking sheet. The effects of various parameters on the velocity and temperature profiles are also presented here.  相似文献   

20.
The influence of partial slip, thermal radiation and temperature dependent fluid properties on the hydro-magnetic fluid flow and heat transfer over a flat plate with convective surface heat flux at the boundary and non-uniform heat source/sink is studied. The transverse magnetic field is assumed as a function of the distance from the origin. Also it is assumed that the fluid viscosity and the thermal conductivity vary as an inverse function and linear function of temperature respectively. Using the similarity transformation, the governing system of non-linear partial differential equations are transformed into similarity non-linear ordinary differential equations and are solved numerically using symbolic software MATHEMATICA 7.0. The numerical values obtained within the boundary layer for the dimensionless velocity, temperature, skin friction coefficient and the Nusselt number are presented through graphs and tables for several sets of values of the parameters. The effects of various physical parameters on the flow and heat transfer characteristics are discussed from the physical point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号