首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of local thermal non-equilibrium on the onset of convection in a porous medium consisting of two horizontal layers is studied analytically. Linear stability theory is applied. Variations of permeability, fluid conductivity, solid conductivity, interphase heat transfer coefficient and porosity are considered. It is found that heterogeneity of permeability and fluid conductivity have a major effect, heterogeneity of interphase heat transfer coefficient and porosity have a lesser effect, while heterogeneity of solid conductivity is relatively unimportant.  相似文献   

2.
The effect of local thermal non-equilibrium on the onset of convection in a porous medium consisting of two horizontal layers, each internally heated, is studied analytically. Linear stability theory is applied. Variations of permeability, fluid thermal conductivity, solid thermal conductivity, source strength in the solid and fluid phases, interphase heat-transfer coefficient and porosity are considered. It is found that heterogeneity of permeability, fluid thermal conductivity and source strength in the fluid phase have a major effect; heterogeneity of interphase heat-transfer coefficient and porosity have a lesser effect, while heterogeneity of solid thermal conductivity and source strength in the solid phase are relatively unimportant.  相似文献   

3.
Finger type double diffusive convective instability in a fluid-saturated porous medium is studied in the presence of coupled heat-solute diffusion. A local thermal non-equilibrium (LTNE) condition is invoked to model the Darcian porous medium which takes into account the energy transfer between the fluid and solid phases. Linear stability theory is implemented to compute the critical thermal Rayleigh number and the corresponding wavenumber exactly for the onset of stationary convection. The effects of Soret and Dufour cross-diffusion parameters, inter-phase heat transfer coefficient and porosity modified conductivity ratio on the instability of the system are investigated. The analysis shows that positive Soret mass flux triggers instability and positive Dufour energy flux enhances stability whereas their combined influence depends on the product of solutal Rayleigh number and Lewis number. It also reveals that cell width at the convection threshold gets affected only in the presence of both the cross-diffusion fluxes. Besides, asymptotic solutions for both small and large values of the inter-phase heat transfer coefficient and porosity modified conductivity ratio are found. An excellent agreement is found between the exact and asymptotic solutions.  相似文献   

4.
A local thermal non-equilibrium model has been considered for the case of thermally fully developed flow within a constant heat flux tube filled with a porous medium. Exact temperature profiles for the fluid and solid phases are found after combining the two individual energy equations and then transforming them into a single ordinary differential equation with respect to the temperature difference between the solid phase and the wall subject to constant heat flux. The exact solutions for the case of metal-foam and air combination reveal that the local thermal equilibrium assumption may fail for the case of constant heat flux wall. The Nusselt number is presented as a function of the Peclet number, which shows a significant increase due to both high stagnant thermal conductivity and thermal dispersion resulting from the presence of the metal-foam.  相似文献   

5.
The stability of a horizontal fluid saturated anisotropic porous layer heated from below and cooled from above is examined analytically when the solid and fluid phases are not in local thermal equilibrium. Darcy model with anisotropic permeability is employed to describe the flow and a two-field model is used for energy equation each representing the solid and fluid phases separately. The linear stability theory is implemented to compute the critical Rayleigh number and the corresponding wavenumber for the onset of convective motion. The effect of thermal non-equilibrium and anisotropy in both mechanical and thermal properties of the porous medium on the onset of convection is discussed. Besides, asymptotic analysis for both very small and large values of the interphase heat transfer coefficient is also presented. An excellent agreement is found between the exact and asymptotic solutions. Some known results, which correspond to thermal equilibrium and isotropic porous medium, are recovered in limiting cases.  相似文献   

6.
This work presents a boundary layer analysis for the free convection heat transfer from a vertical cylinder in bidisperse porous media with constant wall temperature. A boundary layer analysis and the two-velocity two-temperature formulation are used to derive the nonsimilar governing equations. The transformed governing equations are solved by the cubic spline collocation method to yield computationally efficient numerical solutions. The effects of inter-phase heat transfer parameter, modified thermal conductivity ratio, and permeability ratio on the heat transfer and flow characteristics are studied. Results show that an increase in the modified thermal conductivity ratio and the permeability ratio can effectively enhance the free convection heat transfer of the vertical cylinder in a bidisperse porous medium. Moreover, the thermal nonequilibrium effects are strong for low values of the inter-phase heat transfer parameter.  相似文献   

7.
Continuum equations governing thermal non-equilibrium modeling of steady natural convection inside wavy enclosures with the effect of thermal radiation are developed. These equations account for such effects as the inter-phase heat transfer coefficient effect, the thermal radiation effect, the modified conductivity ratio effect and the Rayleigh number effect. Finite difference method is employed to solve these equations and comparisons between previous published works are presented. Numerical results for the flow and heat transfer for the fluid and solid phases are obtained for various combinations of the physical parameters. Graphical and tabular results illustrating interesting features of the physics of the problem are presented and discussed.  相似文献   

8.
A theoretical study is performed on heat and fluid flow in partially porous medium filled parallel plate channel. A uniform symmetrical heat flux is imposed onto the boundaries of the channel partially filled with porous medium. The dimensional forms of the governing equations are solved numerically for different permeability and effective thermal conductivity ratios. Then, the governing equations are made dimensionless and solved analytically. The results of two approaches are compared and an excellent agreement is observed, indicating correctness of the both solutions. An overall Nusselt number is defined based on overall thermal conductivity and difference between the average temperature of walls and mean temperature to compare heat transfer in different channels with different porous layer thickness, Darcy number, and thermal conductivity ratio. Moreover, individual Nusselt numbers for upper and lower walls are also defined and obtained. The obtained results show that the maximum overall Nusselt number is achieved for thermal conductivity ratio of 1. At specific values of Darcy number and thermal conductivity ratio, individual Nusselt numbers approach to infinity since the value of wall temperatures approaches to mean temperature.  相似文献   

9.
The effect of local thermal non-equilibrium (LTNE) on the onset of thermomagnetic convection in a ferromagnetic fluid-saturated horizontal porous layer in the presence of a uniform vertical magnetic field is investigated. A modified Forchheimer-extended Darcy equation is employed to describe the flow in the porous medium, and a two-field model is used for temperature representing the solid and fluid phases separately. It is found that both the critical Darcy–Rayleigh number and the corresponding wave number are modified by the LTNE effects. Asymptotic solutions for both small and large values of scaled interphase heat transfer coefficient H t are presented and compared with those computed numerically. An excellent agreement is obtained between the asymptotic and the numerical results. Besides, the influence of magnetic parameters on the instability of the system is also discussed. The available results in the literature are recovered as particular cases from the present study.  相似文献   

10.
In this article nonsimilarity solution for mixed convection from a horizontal surface in a saturated porous medium was obtained for the case of variable surface heat flux. The entire mixed convection regime, ranging from pure forced convection to pure free convection, is considered by introducing a single nonsimilarity parameter. Heat transfer results are predicted by employing four different flow models, namely, Darcy's law, the Ergun model, and the Brinkman-Forchheimer-extended Darcy model with constant and variable porosity. The variable porosity effect is approximated by an exponential function. Effects of transverse thermal dispersion are taken into consideration in the energy equation, along with variable stagnant thermal conductivities. The formulation of the present problem shows that the flow and heat transfer characteristics depend on five parameters, that is, the power in the variation of surface heat flux, the nonsimilarity mixed-convection parameter, the inertia effect parameter, the boundary effect parameter, and the ratio of thermal conductivity of the fluid phase to that of the solid phase. Numerical results for the local Nusselt number variations, based on the various flow models, are presented for the entire mixed convection regime. The impacts␣of different governing parameters on the heat transfer results are thoroughly investigated. Received on 7 August 1997  相似文献   

11.
In this article, free convection heat transfer over a vertical cylinder with variable surface temperature distributions in a porous medium is analyzed. It is assumed that the fluid and solid phases are not in local thermal equilibrium and, therefore, a two-temperature model of heat transfer is applied. The coupled momentum and energy equations are presented and then they are transformed into ordinary differential equations. The similarity equations are solved numerically. The resulting velocity, streamlines, temperature distributions for fluid and solid phases are shown for different values of parameters entering into the problem. The calculated values of the local Nusselt numbers for both solid and fluid phases are also shown.  相似文献   

12.
Transient thermal effects in a porous medium subjected to oscillatory flow of hot and cold fluid are studied. The governing equations of thermal non-equilibrium model have been numerically solved by a finite difference scheme. The amplitude of temperature fluctuation, a parameter relating to the energy storage, is seen to vary significantly with distance and time. The storage of energy is largely governed by fluid to solid phase thermal storage capacity ratio. Effects arising from changes in bed parameters are discussed.  相似文献   

13.
Double diffusive convection in a fluid-saturated rotating porous layer heated from below and cooled from above is studied when the fluid and solid phases are not in local thermal equilibrium, using both linear and non-linear stability analyses. The Darcy model that includes the time derivative and Coriolis terms is employed as momentum equation. A two-field model that represents the fluid and solid phase temperature fields separately is used for energy equation. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. It is found that small inter-phase heat transfer coefficient has significant effect on the stability of the system. There is a competition between the processes of thermal and solute diffusions that causes the convection to set in through either oscillatory or finite amplitude mode rather than stationary. The effect of solute Rayleigh number, porosity modified conductivity ratio, Lewis number, diffusivity ratio, Vadasz number and Taylor number on the stability of the system is investigated. The non-linear theory based on the truncated representation of Fourier series method predicts the occurrence of subcritical instability in the form of finite amplitude motions. The effect of thermal non-equilibrium on heat and mass transfer is also brought out.  相似文献   

14.
This paper uses thermal non-equilibrium model to study transient heat transfer by natural convection of a nanofluid over a vertical wavy surface. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. Three-temperature model is applied to represent the local thermal non-equilibrium among the particle, fluid, and solid-matrix phases. Finite difference method is used to solve the dimensionless governing equations of the problem. The obtained results are displayed in 2D graphs to illustrate the influences of the different physical parameters on local skin-friction coefficient, local Nusselt numbers for fluid, particle and solid phases and local Sherwood number. The results for velocity component, nanoparticle volume fraction, fluid temperature, particle temperature and solid-matrix temperature are presented in 3D graphs as a function of the axial and transverse coordinates. All the obtained results are discussed.  相似文献   

15.
In this paper, the thermo-poroelasticity theory is used to investigate the quasi-static response of temperatures, pore pressure, stress, displacement, and fluid flux around a cylindrical borehole subjected to impact thermal and mechanical loadings in an infinite saturated poroelastic medium. It has been reported in literatures that coupled flow known as thermo-osmosis by which flux is driven by temperature gradient, can significantly change the fluid flux in clay, argillaceous and many other porous materials whose permeability coefficients are very small. This study presents a mathematical model to investigate the coupled effect of thermo-osmosis in saturated porous medium. The energy balance equations presented here fulfill local thermal non-equilibrium condition (LTNE) which is different from the local thermal equilibrium transfer theory, accounting for that temperatures of solid and fluid phases are not the same and governed by different heat transfer equations. Analytical solutions of temperatures, pore pressure, stress, displacement, and fluid flux are obtained in Laplace transform space. Numerical results for a typical clay are used to investigate the effect of thermo-osmosis. The effects of LTNE on temperatures, pore pressure, and stress are also studied in this paper.  相似文献   

16.
Effects of a conductive wall on natural convection in a square porous enclosure having internal heating at a rate proportional to a power of temperature difference is studied numerically in this article. The horizontal heating is considered, where the vertical walls heated isothermally at different temperatures while the horizontal walls are kept adiabatic. The Darcy model is used in the mathematical formulation for the porous layer and finite difference method is applied to solve the dimensionless governing equations. The governing parameters considered are the Rayleigh number (0 ???Ra ???1000), the internal heating and the local exponent parameters (0 ????? ???5), (1 ????? ???3), the wall to porous thermal conductivity ratio (0.44 ???Kr ???9.9) and the ratio of wall thickness to its width (0.02 ???D ???0.5). The results are presented to show the effect of these parameters on the fluid flow and heat transfer characteristics. It is found a strong internal heating can generate significant maximum fluid temperature more than the conductive solid wall. Increasing value thermal conductivity ratio and/or decreasing the thickness of solid wall can increase the maximum fluid temperature. It is also found that at very low Rayleigh number, the heat transfer across the porous enclosure remain stable for any values of the thermal conductivity ratio.  相似文献   

17.
In this research, pore scale simulation of natural convection in a differentially heated enclosure filled with a conducting bidisperse porous medium is investigated using the thermal lattice Boltzmann method. For the first time, the effect of connection of the bidisperse porous medium to the enclosure walls is studied by considering the attached geometry in addition to the detached one. Effect of most relevant parameters on the streamlines and isotherms as well as hot wall average Nusselt number is studied for two of the bidisperse porous medium configurations. It is observed that effect of geometrical and thermo-physical parameters of the bidisperse porous medium on the heat transfer characteristics is more complicated for the attached configuration. To assess the validity of the local thermal equilibrium condition in the micro-porous media, the pore scale results are used to compute the percentage of the local thermal non-equilibrium for two of the bidisperse porous medium configurations. It is concluded that for the detached configuration, the local thermal equilibrium condition is confirmed in the entire micro-porous media for the ranges of the parameters studied here. However, for the attached geometry, it is shown that departure from the local thermal equilibrium condition is observed for the higher values of the Rayleigh number, micro-porous porosity, solid–fluid thermal conductivity ratio, and the smaller values of the macro-pores volume fraction.  相似文献   

18.
This article is concerned with thermal non-equilibrium (TNE) free convection in a two-dimensional porous enclosure. The Darcy model is used for the momentum equation and it is assumed that a substantial temperature difference exists between solid and fluid phases. Numerical solutions of the governing equations are obtained for a wide range of the governing parameters. The Nusselt numbers for both solid and fluid phases are calculated for a wide range of Rayleigh number, i.e., 500??? Ra??? 1500. The effects of the cavity dimensions as well as the fluid-to-solid conductivity ratio on the Nusselt number are also studied. The results of the presented study are compared with those of thermal equilibrium model. Moreover, the results are compared with major computational models presented in the literatures. The results obtained for the Nusselt number in the case of TNE model are correlated with a function incorporating the effects of effective non-dimensional parameters.  相似文献   

19.
对于端部受温度载荷的一维半无限长多孔介质柱体,给出了热局部非平衡下固相和流相温度场在Laplace变换域中的解析表达式.对于冲击温度载荷的情况,获得了温度场在短时间内的Laplace逆变换渐近解析解.数值分析了流、固两相热扩散系数之比以及热交换系数对固相和流相温度场的影响,比较了热局部非平衡下加权温度与热局部平衡下温度之间的差别.  相似文献   

20.
Double diffusive convection in a fluid-saturated rotating porous layer is studied when the fluid and solid phases are not in local thermal equilibrium, using both linear and nonlinear stability analyses. The Brinkman model that includes the Coriolis term is employed as the momentum equation. A two-field model that represents the fluid and solid phase temperature fields separately is used for the energy equation. The onset criterion for stationary, oscillatory, and finite amplitude convection is derived analytically. It is found that small inter-phase heat transfer coefficient has significant effect on the stability of the system. There is a competition between the processes of thermal diffusion, solute diffusion, and rotation that causes the convection to set in through either oscillatory or finite amplitude mode rather than stationary. The effect of solute Rayleigh number, porosity modified conductivity ratio, Lewis number, diffusivity ratio, Vadasz number, and Taylor number on the stability of the system is investigated. The nonlinear theory based on the truncated representation of Fourier series method predicts the occurrence of subcritical instability in the form of finite amplitude motions. The effect of thermal non-equilibrium on heat and mass transfer is also brought out. Some of the convection systems previously reported in the literature is shown to be special cases of the system presented in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号