首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IntroductionWhentheboundaryintegralequationmethodisappliedtocrackanalysis,onlynumericalsolutionscanbeobtained ,suchas:thetypicalworksofSnyderandCruse[1],Crouch[2 ],Blandfordetal.[3],Portelaetal.[4 ],Bui[5 ],Weaver[6 ]andWANGetal.[7- 9].Itisverydifficulttoapplytheboundar…  相似文献   

2.
Transient response of an annular interfacial crack between dissimilar magnetoelectroelastic layers under impacts is investigated. On the crack surface, magnetoelectrically impermeable boundary condition is adopted. Using Laplace and Hankel transform techniques, the mixed boundary value problem is reduced to a system of singular integral equations. The integral equations are further reduced to a system of algebraic equations with the aid of Jacobi polynomials. The dynamic field intensity factor and dynamic energy release rate are determined. Numerical results reveal the effects of electric or magnetic loadings and material parameters of composite on crack propagation and growth.  相似文献   

3.
This paper focuses on the theoretical basis for the study of wave scattering from an interface crack in multilayered piezoelectric media. The materials are taken to be anisotropic with arbitrary symmetry. Based on the Fourier transform technique together with the aid of the stiffness matrix approach, the boundary value problem of wave scattering is reduced to solving a system of Cauchy-type singular equations. The intensity factors and crack opening displacements are defined in terms of the solutions of the corresponding integral equations for any incident frequencies and incident angles. Numerical results are presented. The effects of incident frequencies and crack location on both the major and coupling intensity factors are illustrated. The influence of the piezoelectricity is also shown.  相似文献   

4.
余迎松  秦太验 《力学与实践》2005,27(3):40-42,72
采用Somigiliana公式给出了三维横观各向同性压电材料中的非渗漏裂纹问题的一般解和超奇异积分方程,其中未知函数为裂纹面上的位移间断和电势间断.在此基础上,使用有限部积分和边界元结合的方法,建立了超奇异积分方程的数值求解方法,并给出了一些典型数值算例的应力强度因子和电位移强度因子的数值结果,结果令人满意.  相似文献   

5.
In this paper, the problem of a crack embedded in a half-plane piezoelectric solid with traction-induction free boundary is analyzed. A system of singular integral equations is formulated for the materials with general anisotropic piezoelectric properties and for the crack with arbitrary orientation. The kernel functions developed are in complex form for general anisotropic piezoelectric materials and are then specialized to the case of transversely isotropic piezoelectric materials which are in real form. The obtained coupled mechanical and electric real kernel functions may be reduced to those kernel functions for purely elastic problems when the electric effects disappear. The system of singular integral equations is solved numerically and the coupling effects of the mechanical and electric phenomena are presented by the generalized stress intensity factors for transversely isotropic piezoelectric materials.  相似文献   

6.
This paper studies the internal crack problem located within one functionally graded piezoelectric strip. One crack is normal to the edge of the strip and the material properties vary along the direction of crack length. Three different boundary conditions and both impermeable and permeable cases are discussed. The problem can be reduced to a system of singular integral equations and solved by using the Gauss–Chebyshev formulas. The results show that the edge boundary conditions and the nonhomogeneous parameter significantly control the magnitudes of stress and electric displacement intensity factors.  相似文献   

7.
The electroelastic analysis of a cracked piezoelectric composite is made. The piezoelectric composite consists of a piezoelectric ceramic strip sandwiched by two outer elastic dielectrics, and a crack is assumed to be located at the center of the piezoelectric strip and normal to the interfaces. By using an integral transform technique, the problem is reduced to singular integral equations with Cauchy kernel. Numerical solutions are determined via the Lobatto–Chebyshev collocation method. The field intensity factors for a realistic crack are obtained, and the solution of a realistic crack lies between those of an impermeable crack and a permeable crack. The results indicate that electric loading has an apparent influence on crack growth. This effect disappears when crack becomes permeable to electric field. Moreover, stiffer outer dielectrics can hinder crack growth.  相似文献   

8.
The assumptions of impermeable and permeable cracks give rise to significant errors in determining electro-elastic behavior of a cracked piezoelectric material. The former simply imposes that the permittivity or electric displacement of the crack interior vanishes, and the latter neglects also the effects of the dielectric of an opening crack interior. Considering the presence of the dielectric of an opening crack interior and the permeability of the crack surfaces for electric field, this paper analyzes electro-elastic behavior induced by a penny-shaped dielectric crack in a piezoelectric ceramic layer. In the cases of prescribed displacement or prescribed stress at the layer surfaces, the Hankel transform technique is employed to reduce the problem to Fredholm integral equations with a parameter dependent nonlinearly on the unknown functions. For an infinite piezoelectric space, a closed-form solution can be derived explicitly, while for a piezoelectric layer, an iterative technique is suggested to solve the resulting nonlinear equations. Field intensity factors are obtained in terms of the solution of the equations. Numerical results of the crack opening displacement intensity factors are presented for a cracked PZT-5H layer and the effect of applied electric field on crack growth are examined for both cases. The results indicate that the fracture toughness of a piezoelectric ceramic is affected by the direction of applied electric fields, dependent on the elastic boundary conditions.  相似文献   

9.
An axisymmetric annular electric dislocation is defined. The solution of axisymmetric electric and Volterra climb and glide dislocations in an infinite transversely isotropic piezoelectric domain is obtained by means of Hankel transforms. The distributed dislocation technique is used to construct integral equations for a system of co-axial annular cracks with so-called permeable and impermeable electric boundary conditions on the crack faces where the domain is under axisymmetric electromechanical loading. These equations are solved numerically to obtain dislocation densities on the crack surfaces. The dislocation densities are employed to determine field intensity factors for a system of interacting annular and/or penny-shaped cracks.  相似文献   

10.
A penny-shaped interfacial crack between dissimilar magnetoelectroelastic layers subjected to magnetoelectromechanical loads is investigated,where the magnetoelectrically impermeable crack surface condition is adopted. By using Hankel transform technique,the mixed boundary value problem is firstly reduced to a system of singular integral equations,which are further reduced to a system of algebraic equations. The field intensity factors and energy release rate are finally derived. Numerical results elucidate the eects of crack configuration,electric and/or magnetic loads,and material parameters of the magnetoelectroelastic layers on crack propagation and growth. This work should be useful for the design of magnetoelectroelastic composite structures.  相似文献   

11.
In this paper, a mixed electric boundary value problem for a two-dimensional piezoelectric crack problem is presented, in the sense that the crack face is partly conducting and partly impermeable. By the analytical continuation method, the unknown electric charge distributions on the upper and lower conducting crack faces are reduced to two decoupled singular integral equations and then these two equations are converted into algebraic equations to find the full field solution. Though the results suggest that the stress intensity factors at the crack tip are identical to those of conventional piezoelectric materials, but the electric field and electric displacement are related to the electric boundary conditions on the crack faces. The electric field and electric displacement are singular not only at crack tips but also at the junctures between the impermeable part and conducting parts. Numerical results for the variations of the electric field, electric displacement field and J-integral with respect to the normalized impermeable crack length are shown. Some discussions for the energy release rate and the J-integral are made.  相似文献   

12.
Existing studies on the fracture of cracked piezoelectric materials have been limited mostly to the electrically impermeable and permeable crack models, which represent the limiting cases of the physical boundary condition along the crack surfaces. This paper presents a study on the electromechanical behaviour of interacting dielectric cracks in piezoelectric materials. The cracks are filled with dielectric media and, as the result, the electric boundary condition along the crack surfaces is governed by the opening displacement of the cracks. The formulation of this nonlinear problem is based on simulating the cracks using distributed dislocations and solving the resulting nonlinear singular integral equations. Multiple deformation modes are observed. A solution technique is developed to determine the desired deformation mode of the interacting cracks. Numerical results are given to show the effect of the interaction between parallel cracks. Attention is paid to the transition between permeable and impermeable models with increasing crack opening.  相似文献   

13.
Using the hypersingular integral equation method based on body force method, a planar crack in a three-dimensional transversely isotropic piezoelectric solid under mechanical and electrical loads is analyzed. This crack problem is reduced to solve a set of hypersingular integral equations. Compare with the crack problems in elastic isotropic materials, it is shown that for the impermeable crack, the intensity factors for piezoelectric materials can be obtained from those for elastic isotropic materials. Based on the exact analytical solution of the singular stresses and electrical displacements near the crack front, the numerical method of the hypersingular integral equation is proposed by the finite-part integral method and boundary element method, which the square root models of the displacement and electric potential discontinuities in elements near the crack front are applied. Finally, the numerical solutions of the stress and electric field intensity factors of some examples are given.  相似文献   

14.
The hyper-singular boundary integral equation method of crack analysis in three-dimensional transversely isotropic magnetoelectroelastic media is proposed. Based on the fundamental solutions or Green’s functions of three-dimensional transversely isotropic magnetoelectroelastic media and the corresponding Somigliana identity, the boundary integral equations for a planar crack of arbitrary shape in the plane of isotropy are obtained in terms of the extended displacement discontinuities across crack faces. The extended displacement discontinuities include the displacement discontinuities, the electric potential discontinuity and the magnetic potential discontinuity, and correspondingly the extended tractions on crack face represent the conventional tractions, the electric displacement and the magnetic induction boundary values. The near crack tip fields and the intensity factors in terms of the extended displacement discontinuities are derived by boundary integral equation approach. A solution method is proposed by use of the analogy between the boundary integral equations of the magnetoelectroelastic media and the purely elastic materials. The influence of different electric and magnetic boundary conditions, i.e., electrically and magnetically impermeable and permeable conditions, electrically impermeable and magnetically permeable condition, and electrically permeable and magnetically impermeable condition, on the solutions is studied. The crack opening model is proposed to consider the real crack opening and the electric and magnetic fields in the crack cavity under combined mechanical-electric-magnetic loadings. An iteration approach is presented for the solution of the non-linear model. The exact solution is obtained for the case of uniformly applied loadings on the crack faces. Numerical results for a square crack under different electric and magnetic boundary conditions are displayed to demonstrate the proposed method.  相似文献   

15.
I. INTRODUCTION Owing to the intrinsic coupling characteristics between electric and elastic behaviors, piezoelectricmaterials have been used widely in technology such as transducers, actuators, sensors, etc. Studieson electroelastic problems of a piezo…  相似文献   

16.
The problem of an antiplane crack situated in the interface of two bonded dissimilar graded piezoelectric half-spaces is considered under the permeable crack assumption. The mechanical and electrical properties of the half-spaces are considered for a class of functional forms for which the equilibrium equation has analytic solutions. By using an integral transform technique, the problem is reduced to dual integral equations which are transformed into a Fredholm integral equation by introducing an auxiliary function. The stress intensity factors are obtained in explicit form in terms of auxiliary functions. By solving the Fredholm integral equation numerically, the numerical results for stress intensity factors are obtained which have been displayed graphically to show the influence of the graded piezoelectric materials.  相似文献   

17.
This is part II of the work concerned with finding the stress intensity factors for a circular crack in a solid with piezoelectric behavior. The method of solution involves reducing the problem to a system of hypersingular integral equations by application of the unit concentrated displacement discontinuity and the unit concentrated electric potential discontinuity derived in part I [1]. The near crack border elastic displacement, electric potential, stress and electric displacement are obtained. Stress and electric displacement intensity factors can be expressed in terms of the displacement and the potential discontinuity on the crack surface. Analogy is established between the boundary integral equations for arbitrary shaped cracks in a piezoelectric and elastic medium such that once the stress intensity factors in the piezoelectric medium can be determined directly from that of the elastic medium. Results for the penny-shaped crack are obtained as an example.  相似文献   

18.
The present investigation of the crack problem in piezoelectric materials is performed based on the non-local theory. After some manipulations, the impermeable crack, the permeable crack (the crack gap is full of NaCI solution), and the semi-permeable crack (the crack gap is full of air or silicon oil) are reduced to a uniform formulation by assuming the normal electric displacement on the crack surfaces to be an unknown variable. Thus, a triple integral equation with the unknown normal electric displacement is established. By using the Newton iterative method and solving the triple integral equation, it is found that the normal electric displacement on the crack surfaces is no longer a constant as determined by previous studies, rather, it depends upon the remote combined electromechanical loadings. Numerical results of the stresses and electric displacement fields show that there are no singularities at the crack tips so that the stresses remain finite. It is of great significance that the concrete electric boundary condition on the crack surfaces exerts significant influence on the near-tip fields and in this way plays an important role in evaluating the crack stability in the non-local piezoelectric materials. More specifically, the impermeable crack model always overestimates the finite stresses at the crack tips, whereas the permeable crack model always underestimates them.  相似文献   

19.
Considering the dielectric effects inside a crack, the problem of an electrically dielectric crack in a functionally graded piezoelectric layer is addressed in this paper. The energetically consistent crack-face boundary conditions are utilized to analyze the effects of a dielectric of crack interior. Applying the Fourier transform technique, the boundary-value problem is reduced to solving three coupling singular equations. Then a system of non-linear algebraic equations is obtained and the field intensity factors along with the energy release rate are given. Numerical results show the differences of the electric displacement inside a crack, the stress and electric displacement intensity factors and the energy release rate using the permeable, impermeable, semi-permeable and energetically consistent boundary conditions respectively. The effects of the material non-homogeneity, the applied electric field and the discharge field of crack interior on the electrostatic traction acting on the crack faces and the energy release rate are further studied through the energetically consistent boundary conditions.  相似文献   

20.
The main objective of this work is the contribution to the study of the piezoelectric structures which contain preexisting defect (crack). For that, we consider a Griffith crack located at the interface of two piezoelectric materials in a semi-infinite plane structure. The structure is subjected to an anti-plane shearing combined with an in-plane electric displacement. Using integral Fourier transforms, the equations of piezoelectricity are converted analytically to a system of singular integral equations. The singular integral equations are further reduced to a system of algebraic equations and solved numerically by using Chebyshev polynomials. The stress intensity factor and the electric displacement intensity factor are calculated and used for the determination of the energy release rate which will be taken as fracture criterion. At the end, numerical results are presented for various parameters of the problem; they are also presented for an infinite plane structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号