首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The velocity field in a patient-specific abdominal aneurysm model including the aorto–iliac bifurcation was measured by 2D PIV. Phase-averaged velocities obtained in 14 planes reveal details of the flow evolution during a cycle. The aneurysm expanding asymmetrically toward the anterior side of the aorta causes the generation of a vortex at its entrance, covering the entire aneurysm bulge progressively before flow peak. The fluid entering the aneurysm impinges on the left side of its distal end, following the axis of the upstream aorta segment, causing an increased flow rate in the left (compared to the right) common iliac artery. High shear stresses appear at the aneurysm inlet and outlet as well as along the posterior wall, varying proportionally to the flow rate. At the same regions, elevated flow disturbances are observed, being intensified at flow peak and during the deceleration phase. Low shear stresses are present in the recirculation region, being two orders of magnitude smaller than the previous ones. At flow peak and during the deceleration phase, a clockwise swirling motion (viewed from the inlet) is present in the aneurysm due to the out of plane curvature of the aorta.  相似文献   

2.
Y. Xu  P. Wang  R. Qian 《Rheologica Acta》1986,25(3):239-245
Three-dimensional velocity distributions in the entry region of a rectangular slit contraction were investigated using a dual-beam laser Doppler velocimeter. The flow of a silicone oil (a Newtonian fluid) and a solution of silicone rubber in the same silicone oil (a viscoelastic fluid) was studied at low Reynolds numbers (Re < 0.5). In contrast to the usual velocity distribution of a Newtonian fluid, the viscoelastic fluid showed the following characteristic features: (1) a pronounced axial velocity overshoot immediately after the slit entrance and a maximum before the slit exit; (2) appearance of an axial flow deceleration region just before the sharp acceleration near the slit entrance. Even more remarkably, a saddle form of velocity profile was found in the entrance region. This flow pattern is completely different from that found for Newtonian fluids and has not yet been explained using existing rheological analysis.Parts of this paper were presented at the IX. Intern. Congress on Rheology at Acapulco (Mexico), October 8–13, 1984  相似文献   

3.
Most of the studies on gas turbine blade internal channels have focused on constant cross-sectional areas from entrance to turn. Gas turbine blades are typically tapered from hub to tip to reduce thermal loading. These channels exist inside high-performance turbine blades for providing effective cooling to the blade external surface, which is exposed to high-temperature gas flow. Heat transfer measurements are presented for both the straight and tapered square channels including the turn region with and without rib turbulators. The straight channels will have a uniform square cross-section area of 5.08×5.08 cm2. For the tapered channels, the square cross-sectional area reduces from entrance into the first pass (5.08×5.08 cm2) to the 180° turn (2.54×2.54 cm2) and then expands from turn to exit in the second pass (5.08×5.08 cm2). The heat transfer results for tapered channels are compared with results for straight channels. Results show that heat transfer in tapered smooth channels is enhanced significantly due to flow acceleration in the first pass, a combination of taper and turn and flow deceleration in the second pass. Overall, the tapered channels significantly produce higher heat transfer enhancements compared to the Dittus–Boelter correlation for fully developed flow especially in the after-turn region. Based on the results from this study, the heat transfer inside tapered channels in the after-turn region cannot be predicted by calculating local Reynolds numbers and using straight channel heat transfer correlations. However, the first pass Nusselt number enhancement distributions are similar for both straight and tapered channels when normalized using the local Nusselt number based on local Reynolds number. The difference in the after-turn region between the straight and tapered channels is reduced with the addition of rib turbulators.  相似文献   

4.
Three-dimensional turbulent offset jets were investigated using a particle image velocimetry technique. The measurements were performed at three different exit Reynolds numbers and for four offset heights. The results in the early region of flow development clearly show significant effects of Reynolds number and offset height on the decay of maximum mean velocity and growth of the shear layer. On the contrary, the decay and spread rates were found to be nearly independent of offset height at larger downstream distances. The decay rates of 1.18 ± 0.03 as well as the spread rates of 0.055 ± 0.001 and 0.250 ± 0.005 obtained, respectively, in the wall-normal and lateral directions fall in the range of values reported in previous studies. The locations of the maximum mean velocities increased nearly linearly with streamwise distance in the self-similar region. Analysis from two-point velocity correlations revealed substantially larger structures in the outer layer and self-similar region than in the inner layer and developing region. It was also observed that the hairpin vortices in the inner regions of the wall jets are inclined at angles of 11.2° ± 0.6°, which are in good agreement with reported values in boundary layer studies.  相似文献   

5.
Experimental results on the reaction of the near wall turbulence and drag to a localized time periodical blowing are reported. The injection velocity is periodical and dissymmetric in time, with a rapid acceleration phase followed by a slow deceleration one. The flow is relaminarized during 70% of the oscillation period mainly during the deceleration phase. The latter maintains stable the vorticity layer induced by the blowing and prevents its roll-up contrarily to a sinusoidal time periodical blowing. Thus, a time mean drag reduction of 50% is obtained in the region recovering 200 wall units downstream of the blowing slot and this is 40% larger than the drag reduction obtained by a steady blowing with the same time mean severity parameter. The dissymmetric blowing annihilates considerably the wall turbulence activity and gives better results in terms of drag reduction compared with steady and sinusoidal blowing.
Sedat F. TarduEmail:
  相似文献   

6.
Two one-parameter series of real solutions describing the process of deceleration and acceleration of a viscoplastic medium under the action of a time-varying pressure gradient are obtained. The problem of axisymmetric unsteady viscoplastic flow is reduced to the solution of the Stefan boundary-value problem for the heat conduction equation with a nonlinear condition on the boundary of the quasi-rigid core. By a self-similar change of variables the problem can be reduced to a second-order ordinary differential equation. The solutions of this equation are represented in terms of Bessel and elementary functions. As a result, two one-parameter series of solutions, the first of which describes the acceleration and the second the deceleration of a viscoplastic medium in a pipe under the action of a time-varying pressure gradient are obtained.  相似文献   

7.
尹凯弘  吴正  郭明旻 《力学学报》2015,47(2):242-251
采用6 个不同密度下的交通流样本, 从视频中提取大量跟驰车对的车头间距、车速、加速度和速度差数据. 统计分析发现, 加速度值域关于0 点具有对称性; 不同密度下加速度分布具有不同特征; 车头间距、车速和速度差对加速度的影响程度随密度不同而不同. 利用实测数据对GM 模型和Bando 模型进行参数优化, 据此提出一种GM 模型的简化形式和一种改进的Bando 模型, 两者拟合该文实测数据的平均误差都在6% 以下.   相似文献   

8.
On the added mass force at finite Reynolds and acceleration numbers   总被引:1,自引:0,他引:1  
Numerical simulations of flow around a rigid sphere, subjected to a sudden acceleration (or deceleration) in relative velocity, are considered. Particular attention is paid to the interaction between the imposed sudden acceleration and a preexisting finite Re wake. The results clearly establish the independence of added mass coefficient to the acceleration number and to the state of flow prior to acceleration. A simple reasoning based on the different time scales of the flow is given.  相似文献   

9.
A laser anemometer has been used to study the region of accelerating shear flow near the exit of a vertical tube. It is in this region that the transition between steady laminar shear flow in the upstream tube and elongational flow in the downstream liquid jet takes place.Downstream velocity profiles were measured for solutions of 0.9% polyacrylamide in 85% glycerol/water and 0.9% polyacrylamide in water. Reynolds numbers (based on wall conditions in the fully developed upstream flow) ranged from 45 to 310 and Froude numbers from 0.294 to 4.11. Tubes, having sharpedged and rounded exit corners, with diameters of 1.25 cm and 1.90 cm were usedUpstream velocity profiles were measured for a solution of 0.9% polyacrylamide in water. Reynolds numbers ranged from 16 to 670. Only tubes having sharp-edged exit corners were used.It was found that the transition region did not extend upstream into the tube but was confined to the downstream jet. The transition took place over a distance of about 3–5 tube diameters depending upon the value of the Froude number. The axial distance downstream from the tube exit plane at which the velocity profile first became flat increased with increasing Froude number. The magnitude of the jet velocity at this point decreased with increasing Froude number.The condition of the tube exit corner was found to influence the flow in the transition region. Downstream velocity profiles obtained using tubes having rounded exit corners initially develop more slowly than, but soon catch up with and eventually overtake, the corresponding profiles obtained using tubes with sharp-edged exit corners.Downstream velocity profiles obtained for the 0.9% polyacrylamide in 85% glycerol/water solution were found to develop smoothly. The transition from steady shear flow in the tube to elongational flow in the jet took place through the combined processes of acceleration of the outer layers of the jet due to radial transfer of momentum with adjacent inner layers, the process spreading steadily inwards with increasing axial distance from the tube exit plane, and acceleration of the whole due to gravity. However, the velocity profiles obtained for the 0.9% polyacrylamide in water solution did not always develop so smoothly. At a Reynolds number of 310 and Froude number of 2.06 the radial momentum transfer process was restricted to a narrow outer region of the jet until a downstream axial distance of about 2 tube diameters was reached. Thereafter, the transition to a flat profile took place smoothly.  相似文献   

10.
 Flow characteristics in straight tubes with and without a lateral circular protrusion had been investigated using Particle Image Velocimetry over a range of Reynolds numbers from 400 to 1400, and at Womersley number of 65. The practical interest of the flows considered lies mainly in blood flows through arteries with saccular aneurysm. Both steady and pulsating flow experiments had been conducted. It was found that under the steady flow conditions, a recirculating vortex would be formed inside the circular protrusion. The maximum strength of the vortex would be as low as 10% of the bulk mean velocity in the main tube at the highest Reynolds number tested (i.e. at 1400). Under the pulsating flow conditions, the vortex appeared and disappeared at different phase of a cycle. The sequence was only punctuated by quasi-inviscid flow behavior. The steady flow results only resembled those of the pulsating ones for about 1 10 of the time at each cycle. Received: 13 August 1997/Accepted: 30 June 1998  相似文献   

11.
绕水翼超空化流动形态与速度分布   总被引:4,自引:0,他引:4  
为揭示超空化流场结构特性,利用高速全流场显示技术,观察了绕hydronautics水翼的超空化流动形态,并利用数字粒子图像测速仪(DPIV)测量了其速度分布. 在测量空穴内部流速分布时,采用空化流场中的空化泡作为示踪粒子来显示流动结构. 结果表明:随着空化数的降低,超空化流动显现出了明显的阶段特征,其中水汽混合相和汽相的分布决定了空化区域的形态与流速分布;空化区和主流区的汽液交界面处存在着较大的速度梯度;低速分布区域随着空化数的降低由水翼吸力面中后部向水翼下游移动;在空化区域内部,水汽混合区的速度相对较低,而汽相区则与主流区有着相近的速度分布.关键词超空化水翼、DPIV、高速摄像、空化形态、流速分布   相似文献   

12.
Experimental data for a two-dimensional (2-D) turbulent boundary layer (TBL) flow and a three-dimensional (3-D) pressure-driven TBL flow outside of a wing/body junction were obtained for an approach Reynolds number based on momentum thickness of Re θ =23,200. The wing shape had a 3:2 elliptical nose, NACA 0020 profiled tail, and was mounted on a flat wall. Some Reynolds number effects are examined using fine spatial resolution (Δy +=1.8) three-velocity-component laser-Doppler velocimeter measurements of mean velocities and Reynolds stresses at nine stations for Re θ =23,200 and previously reported data for a much thinner boundary layer at Re θ =5,940 for the same wing shape. In the 3-D boundary layers, while the stress profiles vary considerably along the flow due to deceleration, acceleration, and skewing, profiles of the parameter correlate well and over available Reynolds numbers. The measured static pressure variations on the flat wall are similar for the two Reynolds numbers, so the vorticity flux and the measured mean velocities scaled on wall variables agree closely near the wall. The stresses vary similarly for both cases, but with higher values in the outer region of the higher Re θ case. The outer layer turbulence in the thicker high Reynolds number case behaves similarly to a rapid distortion of the flow, since stream-wise vortical effects from the wall have not diffused completely through the boundary layer at all measurement stations. Received: 9 June 2000/Accepted: 26 January 2001  相似文献   

13.
The behavior of compressible jets originated from initially turbulent pipe flows issuing in still air has been investigated at three different subsonic Mach numbers, 0.3, 0.6 and 0.9. Helium, nitrogen and krypton gases were used to generate the jet flows and investigate the additional effects of density on the flow structure. Particle image velocimetry, high-frequency response pressure transducers and thermocouples were used to obtain velocity, Mach number and total temperature measurements inside the flow field. The jets were formed at the exit of an adiabatic compressible frictional turbulent pipe flow, which was developing toward its corresponding sonic conditions inside the pipe, and continued to expand within the first four diameters distance after it exited the pipe. Theoretical considerations based on flow self-similarity were used to obtain the decay of Mach number along the centerline of the jets for the first time. It was found that this decay depends on two contributions, one from the velocity field which is inversely proportional to the distance from the exit and one from the thermal field which is proportional to this distance. As a result, a small non-linearity in the variation of the inverse Mach number with downstream distance was found. The decay of the Mach number at the centerline of the axisymmetric jets increases by increasing the initial Mach number at the exit of the flow for all jets. The decay of mean velocity at the centerline of the jets is also higher at higher exit Mach numbers. However, the velocity non-dimensionalized by the exit velocity seems to decrease faster at low exit Mach numbers, suggesting a reduced mixing with increasing exit flow Mach numbers. Helium jets were found to have the largest spreading rate among the three different gas jets used in the present investigation, while krypton jets had the lowest spreading rate. The spreading rate of each gas decreases with increasing its kinetic energy relatively to its internal energy.  相似文献   

14.
The effects of acoustic excitation on the flow behavior, penetration, and spread of the stack-issued and wall-issued transverse jets were studied experimentally. The jet flow was periodically excited by a loudspeaker that was driven with a square wave at resonance Strouhal numbers. The pulsed transverse jet was characterized by jet Reynolds number 2000. Streak pictures of the smoke flow patterns illuminated by the laser-light sheet in the median plane were recorded with a high-speed digital camera to illustrate the evolution process of the characteristic flow behavior within one excitation cycle. The binary edge-detection technique was used to determine penetration height and spread width. The tracer-gas concentration measurement provided jet dispersion information. The evolution processes of both the stack-issued and wall-issued transverse jets were characterized by a leading vortex ring and swing motion of the jet column near the jet exit as the jets were forced at resonance Strouhal numbers. A leading vortex ring appeared near the jet exit during the leading phase of excitation cycle and evolved subsequently to puffs of jet fluids in the upwind shear layer of the deflected jet. The swinging motion of the near-tube tip jet column induced up/down oscillation of the deflected jet. The excited stack-issued transverse jet exhibited significantly larger penetration height and spread width than the excited wall-issued transverse jet. The tracer-gas detection experiment results showed that the excited transverse jet disperses significantly faster and wider than the non-excited transverse jet. Pulsating the transverse jet at low resonance Strouhal numbers produced higher mixing and dispersion effects than pulsating the transverse jet at high resonance Strouhal numbers.  相似文献   

15.
Efforts are made to explore the hysteresis characteristics of vortex shedding in a pipe flow, whose velocity varies periodically in time. Results obtained show that during acceleration of the flow, the vortex strength tends to be stronger, whereas during deceleration of the flow, the situation is reversed. As reconstructed from the velocity signals measured at a point in the flow field, the shed vortex arrays appear to possess uneven vortex strengths in response to periodically-varying incoming flows. Furthermore, in the hysteresis range, the streamwise spacings between the vortices appear to be unequal.  相似文献   

16.
假设水下爆炸气泡的内部气体在膨胀收缩过程中满足绝热条件,周围流体无黏无旋不可压缩. 基于势流理论,采用边界元法研究气泡动力学行为,重点关注气泡引起的流场脉动载荷以及滞后流特性,给出了相关的理论推导和数值计算方法. 通过将数值结果与解析解、实验值进行对比,数值模型的收敛性和有效性能够得到保证. 利用编写的程序进行计算和分析,发现在气泡加速膨胀阶段,流场压力在气泡径向不一定是逐渐衰减,还有可能以先增后减的规律变化;气泡射流后,为了能够继续描述环状气泡的运动以及流场特性,将此时的流场分为无旋场和一个布置在气泡内部涡环的叠加,计算过程中采用了一些数值技巧处理气泡的拓扑结构,得以连续模拟多个周期的气泡运动. 环状气泡具有相对较高的上浮迁移速度,而且在其顶部和底部附近分别形成两个高压区,顶部的高压区峰值相对较大,底部的高压区范围相对较大. 环状气泡中心轴上的流场速度会在气泡中心有一个加速过程,在气泡顶部附近又迅速减小.  相似文献   

17.
李帅  张阿漫  韩蕊 《力学学报》2014,46(4):533-543
假设水下爆炸气泡的内部气体在膨胀收缩过程中满足绝热条件,周围流体无黏无旋不可压缩. 基于势流理论,采用边界元法研究气泡动力学行为,重点关注气泡引起的流场脉动载荷以及滞后流特性,给出了相关的理论推导和数值计算方法. 通过将数值结果与解析解、实验值进行对比,数值模型的收敛性和有效性能够得到保证. 利用编写的程序进行计算和分析,发现在气泡加速膨胀阶段,流场压力在气泡径向不一定是逐渐衰减,还有可能以先增后减的规律变化;气泡射流后,为了能够继续描述环状气泡的运动以及流场特性,将此时的流场分为无旋场和一个布置在气泡内部涡环的叠加,计算过程中采用了一些数值技巧处理气泡的拓扑结构,得以连续模拟多个周期的气泡运动. 环状气泡具有相对较高的上浮迁移速度,而且在其顶部和底部附近分别形成两个高压区,顶部的高压区峰值相对较大,底部的高压区范围相对较大. 环状气泡中心轴上的流场速度会在气泡中心有一个加速过程,在气泡顶部附近又迅速减小.   相似文献   

18.
The results of detailed, three-dimensional numerical simulations of fixed spherical drops in a uniform flow are presented. The fluid dynamics outside and inside of the drops as well as the internal problem of mass (or heat) transfer are studied. Liquid drops in both a liquid and a gaseous ambient phase are considered. Special emphasis is put on the investigation of different modes of internal circulation.At low Reynolds numbers of the inner fluid, the flow field inside the drop resembles the well known Hill’s vortex solution. However, at higher internal Reynolds numbers, stable steady or quasi-steady alternative modes of internal circulation are found. As these modes are not cylindrical symmetric around the streamwise axis, the often applied assumption of a two-dimensional, axisymmetric flow field is not justified in these cases. Thus, major discrepancies to previous numerical studies are obtained. However, it is shown that experimental results support our findings.For liquid drops surrounded by a liquid, a major influence of the state of internal circulation on the drag is discovered, whereas the drag is nearly unaltered in the case of a liquid drop in gas.Concerning the internal problem of mass/heat transfer, the various internal flow modes show different characteristics. At low internal Peclet numbers, higher Sherwood numbers are reached for the Hill’s vortex-like cases, whereas at higher Peclet numbers, the transfer is faster for the alternative modes. For cases with a Hill’s vortex-like solution, asymptotic Sherwood numbers for very high Peclet numbers of around 20 are found, whereas no upper limit for cases with alternative modes can be determined. In the present study a maximum internal Sherwood number of 130 is reached, more than six times the maximum value for a case with a Hill’s vortex-like internal solution.  相似文献   

19.
动脉瘤内流场以及瘤体尺寸的影响的数值研究   总被引:1,自引:0,他引:1  
采用计算流体动力学(CFD)数值模拟的方法,在周期性脉动速度入流条件下,建立刚性动脉瘤模型并研究了动脉瘤模型中流场的特征(速度、压力、壁面剪切应力)。得到了脉动入流一个周期内流场特征的变化规律,发现动脉瘤的后端有相当高的压力和壁面剪切应力,而且高压力和壁面剪切应力分布的位置几乎是固定的。探讨了不同动脉瘤尺寸对内部流场的影响,动脉瘤的直径与瘤体长度之比越大,瘤壁承受的剪切应力就越大,动脉瘤破裂的危险性就越高。  相似文献   

20.
In the present study, the velocity profile and pressure gradient of the unsteady state unidirectional flow of a Voigt fluid in a circular duct with different prescribed volume flow rate are investigated. The flow motion in the duct is induced by a prescribed inlet volume flow rate which varies with time. Based on the flow conditions prescribed, two basic flow situations are solved; these are a suddenly started, and a constant accelerated, flow respectively. These two results are then applied to a practical case that is a trapezoidal motion which contains three phases of piston motion, the constant acceleration from the rest to a fixed velocity, then maintaining at this velocity, following with the constant deceleration to a stop. In addition, oscillatory flow is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号