首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
三维弹性快速多极边界元法   总被引:2,自引:0,他引:2  
将静电场多极展开法和广义极小残值法结合于三维弹性问题的边界元法,使其求解的计算量及所需内存量同节点的自由度总数成正比,变革计算结构,加快求解速度以适应大规模数值计算。两者结合的关键点在于边界元法基本解的合理分解,并用广义极小残值法(GMRES)求解方程。轧机支承辊变形场大规模数值算例的总自由度数首次达N=34008并获得成功。清晰地描述了支承辊和工作辊接触区的辊型。  相似文献   

2.
大规模边界元模态分析的高效数值方法   总被引:2,自引:2,他引:0  
王俊鹏  校金友  文立华 《力学学报》2017,49(5):1070-1080
随着大规模快速边界元计算技术的发展,在复杂结构的动态设计、振动与噪声分析中愈来愈多地采用边界元法,因此求解大规模边界元特征值问题、进行复杂结构和声场模态分析,成为工程应用中一个十分重要,但却极具挑战性的课题,目前国际上还没有十分有效的数值方法.本文针对边界元法中典型的非线性特征值问题,提出了一种通用、高效的数值解法,称为基于预解矩阵采样的Rayleigh-Ritz投影法,记为RSRR.首先,通过求解一系列频域边界元问题来构造特征向量搜索空间,进而可以采用Rayleigh-Ritz投影,将原问题转化为一个可以采用现有方法求解的小规模缩减特征值问题;其次,为了降低Rayleigh-Ritz投影过程的计算量,基于解析函数的Cauchy积分公式,构造了边界元系数矩阵的插值近似方法,以及缩减特征值问题系数矩阵的快速计算方法,给出了插值项数的估计策略;最后,将RSRR与声学快速边界元法结合,应用于大规模吸声结构的复模态分析.数值算例表明,RSRR方法能够可靠地求出给定频段内的全部特征值和特征向量,具有计算效率高、精度高、通用等优点.  相似文献   

3.
In this paper, it is proven that the balance equation of energy is the first integral of the balance equation of momentum in the linear theory of nonlocal elasticity. In other words, the balance equation of energy is not an independent one. It is also proven that the residual of nonlocal body force identically equals zero. This makes the transform formula of the nonlocal residual of energy much simpler. The linear nonlocal consitutive equations of elastic bodies are deduced in details, and a new formula to calculate the antisymmetric stress is given. Foundation item: the Natural Science Foundation of Jiangsu Province, China (BK97063)  相似文献   

4.
Thelineartheoryofnonlocalelasticityhasbeenappliedtosomeproblemssuchasfracture,dislocationandwavepropagation[1].Itisusedtosolvemanyproblemswhicharenotexplainedbytheclassicalmechanics.Itispointedoutearlier[2],however,someimportantnonlocalpropertiesinth…  相似文献   

5.
A modified boundary element method (BEM) and the DEVSS‐G finite element method (FEM) are applied to model the deformation of a polymeric drop suspended in another fluid subjected to start‐up uniaxial extensional flow. The effects of viscoelasticity, via the Oldroyd‐B differential model, are considered for the drop phase using both FEM and BEM and for both the drop and matrix phases using FEM. Where possible, results are compared with the linear deformation theory. Consistent predictions are obtained among the BEM, FEM, and linear theory for purely Newtonian systems and between FEM and linear theory for fully viscoelastic systems. FEM and BEM predictions for viscoelastic drops in a Newtonian matrix agree very well at short times but differ at longer times, with worst agreement occurring as critical flow strength is approached. This suggests that the dominant computational advantages held by the BEM over the FEM for this and similar problems may diminish or even disappear when the issue of accuracy is appropriately considered. Fully viscoelastic problems, which are only feasible using the FEM formulation, shed new insight on the role of viscoelasticity of the matrix fluid in drop deformation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, the basic ideas of the general boundary element method (BEM) proposed by Liao [in Boundary Elements XVII, Computational Mechanics Publications, Southampton, MA, 1995, pp. 67–74; Int. J. Numer. Methods Fluids, 23 , 739–751 (1996), 24 , 863–873 (1997); Comput. Mech., 20 , 397–406 (1997)] and Liao and Chwang [Int. J. Numer. Methods Fluids, 23 , 467–483 (1996)] are further generalized by introducing a non‐zero parameter . Some related mathematical theorems are proposed. This general BEM contains the traditional BEM in logic, but is valid for non‐linear problems, including those whose governing equations and boundary conditions have no linear terms. Furthermore, the general BEM can solve non‐linear differential equations by means of no iterations. This disturbs the absolutely governing place of iterative methodology of the BEM for non‐linear problems. The general BEM can greatly enlarge application areas of the BEM as a kind of numerical technique. Two non‐linear problems are used to illustrate the validity and potential of the further generalized BEM. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
An analog of Cesàro’s formula and several compatibility conditions are given for the three-dimensional and two-dimensional linear micropolar theory of elasticity in the form different from that used in the literature. A number of formulas are obtained to determine the antisymmetric part of the strain (stress) tensor in terms of the symmetric part of the strain tensor and the symmetric part of the bending-torsion (stress and couple-stress) tensor and to determine the antisymmetric part of the bending-torsion (couple-stress) tensor in terms of the symmetric part of the bending-torsion (couplestress) tensor. Some integro-differential equations of motion expressed in terms of the symmetric parts of the stress and couple-stress tensors are proposed for the micropolar theory of elasticity.  相似文献   

8.
IntroductionTheclassicalconhnuummechanicshasbeenusedtosolvemanyproblemsinmacrofracturemechanics,butencountersdifficulheswhentheeffectofITilcrocharacteristicdimensionshouldbetakenintoaccount.Thestressfieldverynearthecracktipisstillnotclear.Somephenomenaofshortcrackscannotbeexplained["']andsomemechanismoffracturehasnotbeensolvedyet.Thenon-localelashcitytheoryseemsattractivetotheseproblems.Thetheoryofnon-localelasticity,establishedanddevelopedbyEringenetal[3),connectstheclassicalcontinuummechan…  相似文献   

9.
A theory of elasticity for the bending of transversely isotropic plates has been developed from the basic equations of elasticity in terms of displacements for transversely isotropic bodies, which takes into account the loads distributed over the surfaces of the plates. Based on this theory, a refined theory of plates which can satisfy three boundary conditions along each edge of the plates and a new theory of thick plates are established. The solution of the refined theory for simply supported polygonal plates has been obtained; and its numerical result is very close to the exact solution of the three-dimensional theory of elasticity. A systematic comparison with the former theories of thick plates shows that the present theory of thick plates is closest to the result of the theory of elasticity.  相似文献   

10.
声系统特征频率的灵敏度分析为其优化设计提供了基础,具有重要意义。边界元法在声学问题的求解中具有独特优势,但因其系统方程系数矩阵的频率相关性导致的非线性特征值问题给声学特征频率的灵敏度分析带来了很大困难。为此,本文首先对非线性特征值问题进行了线性化处理,利用围道积分投影方法将非线性特征方程转换为小规模广义特征方程,然后对其关于设计变量直接求导,并引入左特征向量和转换矩阵构造了一种适用于内外声场的三维声学单/重特征频率灵敏度分析的边界元法。数值算例验证了该方法的适用性,以及对单/重特征频率灵敏度的计算精度。  相似文献   

11.
The authors have very recently proposed an efficient, accurate alternative scheme to numerically evaluate etc. Green’s function, U(x), and its derivatives for three-dimensional, general anisotropic elasticity. These quantities are necessary items in the formulation of the boundary element method (BEM). The scheme is based on the double Fourier series representation of the explicit, exact, algebraic solution derived by Ting and Lee (1997) [Ting, T.C.T., Lee, V.G., 1997. The three-dimensional elastostic Green’s function for general anisotropic linear elastic solid. Q. J. Mech. Appl. Math. 50, 407–426] expressed in terms of Stroh’s eigenvalues. By taking advantage of some its characteristics, the formulations in this double Fourier series approach are revised and several of the analytical expressions are re-arranged in the present study. This results in significantly fewer terms to be summed in the series thereby improving further the efficiency for evaluating the Green’s function and its derivatives. These revised Fourier series representations of U(x) and its derivatives are employed in a BEM formulation for three-dimensional linear elastostatics. Some numerical examples are presented to demonstrate the veracity of the implementation and its applicability to the elastic stress analysis of generally anisotropic solids. The results are compared with known solutions in the literature where possible, and with those obtained using the commercial finite element code ANSYS. Excellent agreement is obtained in all cases.  相似文献   

12.
There are problems in the classical linear theory of elasticity whose closed form solutions, while satisfying the governing equations of equilibrium together with well-posed boundary conditions, predict the existence of regions, often quite small, inside the body where material overlaps. Of course, material overlapping is not physically realistic, and one possible way to prevent it combines linear theory with the requirement that the deformation field be injective. A formulation of minimization problems in classical linear elasticity proposed by Fosdick and Royer [3] imposes this requirement through a Lagrange multiplier technique. An existence theorem for minimizers of plane problems is also presented. In general, however, it is not certain that such minimizers exist. Here, the Euler–Lagrange equations corresponding to a family of three-dimensional problems is investigated. In classical linear elasticity, these problems do not have bounded solutions inside a body of anisotropic material for a range of material parameters. For another range of parameters, bounded solutions do exist but yield stresses that are infinite at a point inside the body. In addition, these solutions are not injective in a region surrounding this point, yielding unrealistic behavior such as overlapping of material. Applying the formulation of Fosdick and Royer on this family of problems, it is shown that both the displacements and the constitutive part of the stresses are bounded for all values of the material parameters and that the injectivity constraint is preserved. In addition, a penalty functional formulation of the constrained elastic problems is proposed, which allows to devise a numerical approach to compute the solutions of these problems. The approach consists of finding the displacement field that minimizes an augmented potential energy functional. This augmented functional is composed of the potential energy of linear elasticity theory and of a penalty functional divided by a penalty parameter. A sequence of solutions is then constructed, parameterized by the penalty parameter, that converges to a function that satisfies the first variation conditions for a minimizer of the constrained minimization problem when this parameter tends to infinity. This approach has the advantages of being mathematically appealling and computationally simple to implement.  相似文献   

13.
Taylor展开多极边界元法有效的提高了边界元法的求解效率,使之可用于大规模问题的计算。然而,由于计算中对基本解进行了Taylor级数展开,与传统边界元方法相比计算精度有所下降。本文主要针对三维弹性问题Taylor展开多极边界元法的计算精度和误差进行研究。文中对两种方法的计算精度进行了比较;研究了核函数的Taylor展开性质;推导了三维弹性问题基本解的误差估计公式;给出了Taylor展开多极边界元法中远近场的划分原则。通过具体的算例,证明了该方法的正确性和误差估计公式的有效性,说明了影响Taylor展开多极边界元法求解精度的因素。  相似文献   

14.
A dynamic three-dimensional system of linear equations in terms of displacements of the theory of elasticity of transversely isotropic media is given explicit expressions for phase velocities and polarization vectors of plane waves. All the longitudinal normals are found. For some values of the elasticity moduli, the system of equations is reduced to a diagonal shape. For static equations, all the conditions of the system ellipticity are determined. Two new representations of displacements through potential functions that satisfy three independent quasi-harmonic equations are given. Constraints on elasticity moludi, at which the corresponding coefficients in these representations are real, different, equal, or complex, are determined. It is shown that these representations are general and complete. Each representation corresponds to a recursion (symmetry) operator, i.e., a formula of production of new solutions.  相似文献   

15.
几乎奇异积分的计算困难阻碍了边界元法的工程应用。本文针对二维正交各向异性位势问题边界元法中近边界点的几乎奇异积分,采用分部积分法,导出一种直接的解析计算公式。该解析公式可以精确计算线性单元上的几乎奇异积分。对二次单元,可将其细分为几个线性元,采用该解析公式近似计算其边界积分。当内点离当前积分单元较远时,仍保持常规高斯数值积分模式;而当内点离其较近时,因常规高斯积分结果失效,则采用该解析积分取代高斯数值积分。数值算例证明了该算法的有效性和精确性。二次元计算结果比线性元计算结果更精确。  相似文献   

16.
弹性力学的一种正交关系   总被引:8,自引:2,他引:8  
罗建辉  刘光栋 《力学学报》2003,35(4):489-492
在弹性力学求解新体系中,将对偶向量进行重新排序后,提出了一种新的对偶微分矩阵,对于有一个方向正交的各向异性材料的三维弹性力学问题发现了一种新的正交关系.将材料的正交方向取为z轴,证明了这种正交关系的成立.对于z方向材料正交的各向异性弹性力学问题,新的正交关系包含弹性力学求解新体系提出的正交关系。  相似文献   

17.
We derive linearized theories from nonlinear elasticity theory for multiwell energies. Under natural assumptions on the nonlinear stored energy densities, the properly rescaled nonlinear energy functionals are shown to Γ-converge to the relaxation of a corresponding linearized model. Minimizing sequences of problems with displacement boundary conditions and body forces are investigated and found to correspond to minimizing sequences of the linearized problems. As applications of our results we discuss the validity and failure of a formula that is widely used to model multiwell energies in the regime of linear elasticity. Applying our convergence results to the special case of single well densities, we also obtain a new strong convergence result for the sequence of minimizers of the nonlinear problem.   相似文献   

18.
A three-dimensional boundary-value problem for a multilayer rectangular plate is solved under the physically nonlinear theory of elasticity. Various types of interlayer contact conditions are considered. The nonlinear relation between stresses and small strains is assumed to be of the Kauderer form. The solution is represented by a series in powers of a dimensionless small parameter. The problem posed is reduced to a recurrent sequence of linear boundary-value problems. The stress distribution and the effect of physical nonlinearity on the elastic equilibrium of the plate are studied  相似文献   

19.
Using the Somigliana formula and the concepts of finite-part integral, a set of hypersingular integral equations to solve the arbitrary fiat crack in three-dimensional elasticity is derived and its numerical method is then proposed by combining the finitepart integral method with boundary element method. In order to verify the method, several numerical examples are carried out. The results of the displacement discontinuities of the crack surface and the stress intensity factors at the crack front are in good agrernent with the' theoretical solutions.  相似文献   

20.
Approximate solutions of three-dimensional problems of elasticity theory are sought in the form of linear combinations of vector functions each of which satisfies a differential equation. The linear-combination coefficients are found by energy minimization of the difference between exact and approximate solutions. This can be realized in the first and second basic problems. Simple recursion relations and differentiation formulas for similar harmonic polynomials are obtained. The above-mentioned vector functions are constructed using these formulas and the Trefftz representation. The problem of a truncated pyramid is considered. Odessa University, Ukraine. Translated from Prikladnaya Mekhanika, Vol. 35, No. 4, pp. 11–18, April, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号