首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In metal grains one of the most important failure mechanisms involves shear band localization. As the band width is small, the deformations are affected by material length scales. To study localization in single grains a rate-dependent crystal plasticity formulation for finite strains is presented for metals described by the reformulated Fleck–Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered. Furthermore, it is illustrated how different hardening functions affect the formation of shear bands.  相似文献   

2.
Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly.  相似文献   

3.
This work gives the thermodynamically consistent theoretical formulations and the numerical implementation of a plasticity model fully coupled with damage. The formulation of the elasto-plastic-damage behavior of materials is introduced here within a framework that uses functional forms of hardening internal state variables in both damage and plasticity. The damage is introduced through a damage mechanics framework and utilizes an anisotropic damage measure to quantify the reduction of the material stiffness. In deriving the constitutive model, a local yield surface is used to determine the occurrence of plasticity and a local damage surface is used to determine the occurrence of damage. Isotropic hardening and kinematic hardening are incorporated as state variables to describe the change of the yield surface. Additionally, a damage isotropic hardening is incorporated as a state variable to describe the change of the damage surface. The hardening conjugate forces (stress-like terms) are general nonlinear functions of their corresponding hardening state variables (strain-like terms) and can be defined based on the desired material behavior. Various exponential and power law functional forms are studied in this formulation. The paper discusses the general concept of using such functional forms. however, it does not address the relevant appropriateness of certain forms to solve different problems. The proposed work introduces a strong coupling between damage and plasticity by utilizing damage and plasticity flow rules that are dependent on both the plastic and damage potentials. However, in addition to that the coupling is further enhanced through the use of the functional forms of the hardening variables introduced in this formulation.The use of this formulation in solving boundary value problems will be presented in future work. The fully implicit backward Euler scheme is developed for this model to be solved in a Newton–Raphson solution procedure.  相似文献   

4.
A finite strain generalization of the strain gradient plasticity theory by Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001a) 2245) is proposed and used to study size effects in plane strain necking of thin sheets using the finite element method. Both sheets with rigid grips at the ends and specimens with shear free ends are analyzed. The strain gradient plasticity theory predicts delayed onset of localization when compared to conventional theory, and it depresses deformation localization in the neck. The sensitivity to imperfections is analyzed as well as differently hardening materials.  相似文献   

5.
A kinematic hardening model applicable to finite strains is presented. The kinematic hardening concept is based on the residual stresses that evolve due to different obstacles that are present in a polycrystalline material, such as grain boundaries, cross slips, etc. Since these residual stresses are a manifestation of the distortion of the crystal lattice a corresponding deformation gradient is introduced to represent this distortion. The residual stresses are interpreted in terms of the form of a back-stress tensor, i.e. the kinematic hardening model is based on a deformation gradient which determines the back-stress tensor. A set of evolution equations is used to describe the evolution of the deformation gradient. Non-dissipative quantities are allowed in the model and the implications of these are discussed. Von Mises plasticity for which the uniaxial stress–strain relation can be obtained in closed form serves as a model problem. For uniaxial loading, this model yields a kinematic hardening identical to the hardening produced by isotropic exponential hardening. The numerical implementation of the model is discussed. Finite element simulations showing the capabilities of the model are presented.  相似文献   

6.
7.
8.
The buckling and the post-buckling behaviors of a perfect axially loaded column are analytically investigated through a global bilinear moment–curvature elastoplastic constitutive law. Three plasticity cases are studied, namely the linear hardening plasticity law, the perfect elastoplastic case and the softening case. The applications of such a study can be found in various structural engineering problems, including reinforced concrete, steel, timber or composite structures. It is analytically shown that for all kinds of elastoplastic behaviors, the plasticity phenomena lead to a global softening branch in the load–deflection diagram. The propagation of the plasticity zone during the post-buckling process is analytically characterized in case of linear hardening or softening plasticity laws. However, it is shown that the unphysical elastic unloading solution necessarily occurs in presence of local softening moment–curvature constitutive law. A nonlocal plasticity moment–curvature softening law is then used to control the localization branch in the post-buckling stage. This nonlocal plasticity law includes the explicit and the implicit gradient plasticity law. Higher-order plasticity boundary conditions are derived from an extended variational principle. Some parametric studies finally illustrate the main findings of this paper, including the plasticity modulus effect on the post-buckling behavior of these plasticity structural systems.  相似文献   

9.
A material model for concrete is proposed here within the framework of a thermodynamically consistent elasto-plasticity–damage theory. Two anisotropic damage tensors and two damage criteria are adopted to describe the distinctive degradation of the mechanical properties of concrete under tensile and compressive loadings. The total stress tensor is decomposed into tensile and compressive components in order to accommodate the need for the above mentioned damage tensors. The plasticity yield criterion presented in this work accounts for the spectral decomposition of the stress tensor and allows multiple hardening rules to be used. This plastic yield criterion is used simultaneously with the damage criteria to simulate the physical behavior of concrete. Non-associative flow rule for the plastic strains is used to account for the dilatancy of concrete as a frictional material. The thermodynamic Helmholtz free energy concept is used to consistently derive dissipation potentials for damage and plasticity and to allow evolution laws for different hardening parameters. The evolution of the two damage tensors is accounted for through the use of fracture-energy-based continuum damage mechanics. An expression is derived for the damage–elasto-plastic tangent operator. The theoretical framework of the model is described here while the implementation of this model will be discussed in a subsequent paper.  相似文献   

10.
The size effect in conical indentation of an elasto-plastic solid is predicted via the Fleck and Willis formulation of strain gradient plasticity (Fleck, N.A. and Willis, J.R., 2009, A mathematical basis for strain gradient plasticity theory. Part II: tensorial plastic multiplier, J. Mech. Phys. Solids, 57, 1045–1057). The rate-dependent formulation is implemented numerically and the full-field indentation problem is analyzed via finite element calculations, for both ideally plastic behavior and dissipative hardening. The isotropic strain-gradient theory involves three material length scales, and the relative significance of these length scales upon the degree of size effect is assessed. Indentation maps are generated to summarize the sensitivity of indentation hardness to indent size, indenter geometry and material properties (such as yield strain and strain hardening index). The finite element model is also used to evaluate the pertinence of the Johnson cavity expansion model and of the Nix–Gao model, which have been extensively used to predict size effects in indentation hardness.  相似文献   

11.
针对准脆性材料的非线性特征:强度软化和刚度退化、单边效应、侧限强化和拉压软化、不可恢复变形、剪胀及非弹性体胀,在热动力学框架内,建立了准脆性材料的弹塑性与各向异性损伤耦合的本构关系。对准脆性材料的变形机理和损伤诱发的各向异性进行了诠释,并给出了损伤构形和有效构形中各物理量之间的关系。在有效应力空间内,建立了塑性屈服准则、拉压不同的塑性随动强化法则和各向同性强化法则。在损伤构形中,采用应变能释放率,建立了拉压损伤准则、拉压不同的损伤随动强化法则和各向同性强化法则。基于塑性屈服准则和损伤准则,构建了塑性势泛函和损伤势泛函,并由正交性法则,给出了塑性和损伤强化效应内变量的演化规律,同时,联立塑性屈服面和损伤加载面,给出了塑性流动和损伤演化内变量的演化法则。将损伤力学和塑性力学结合起来,建立了应变驱动的应力-应变增量本构关系,给出了本构数值积分的要点。以单轴加载-卸载往复试验识别和校准了本构材料常数,并对单轴单调试验、单轴加载-卸载往复试验、二轴受压、二轴拉压试验和三轴受压试验进行了预测,并与试验结果作了比较,结果表明,所建本构模型对准脆性材料的非线性材料性能有良好的预测能力。  相似文献   

12.
In this contribution various aspects of an anisotropic damage model coupled to plasticity are considered. The model is formulated within the thermodynamic framework and implements a strong coupling between plasticity and damage. The constitutive equations for the damaged material are written according to the principle of strain energy equivalence between the virgin material and the damaged material. The damaged material is modeled using the constitutive laws of the effective undamaged material in which the nominal stresses are replaced by the effective stresses. The model considers different interaction mechanisms between damage and plasticity defects in such a way that two-isotropic and two-kinematic hardening evolution equations are derived, one of each for the plasticity and the other for the damage. An additive decomposition of the total strain into elastic and inelastic parts is adopted in this work. The elastic part is further decomposed into two portions, one is due to the elastic distortion of the material grains and the other is due to the crack closure and void contraction. The inelastic part is also decomposed into two portions, one is due to nucleation and propagation of dislocations and the other is due to the lack of crack closure and void contraction. Uniaxial tension tests with unloadings have been used to investigate the damage growth in high strength steel. A good agreement between the experimental results and the model is obtained.  相似文献   

13.
This study investigates thermodynamically consistent dissipative hardening in gradient crystal plasticity in a large-deformation context. A viscoplastic model which accounts for constitutive dependence on the slip, the slip gradient as well as the slip rate gradient is presented. The model is an extension of that due to Gurtin (Gurtin, M. E., J. Mech. Phys. Solids, 52 (2004) 2545–2568 and Gurtin, M. E., J. Mech. Phys. Solids, 56 (2008) 640–662)), and is guided by the viscoplastic model and algorithm of Ekh et al. (Ekh, M., Grymer, M., Runesson, K. and Svedberg, T., Int. J. Numer. Meths Engng, 72 (2007) 197–220) whose governing equations are equivalent to those of Gurtin for the purely energetic case. In contrast to the Gurtin formulation and in line with that due to Ekh et al., viscoplasticity in the present model is accounted for through a Perzyna-type regularization. The resulting theory includes three different types of hardening: standard isotropic hardening is incorporated as well as energetic hardening driven by the slip gradient. In addition, as a third type, dissipative hardening associated with plastic strain rate gradients is included. Numerical computations are carried out and discussed for the large strain, viscoplastic model with non-zero dissipative backstress.  相似文献   

14.
This work addresses the formulation of the thermodynamics of nonlocal plasticity using the gradient theory. The formulation is based on the nonlocality energy residual introduced by Eringen and Edelen (1972). Gradients are introduced for those variables associated with isotropic and kinematic hardening. The formulation applies to small strain gradient plasticity and makes use of the evanescent memory model for kinematic hardening. This is accomplished using the kinematic flux evolution as developed by Zbib and Aifantis (1988). Therefore, the present theory is a four nonlocal parameter-based theory that accounts for the influence of large variations in the plastic strain, accumulated plastic strain, accumulated plastic strain gradients, and the micromechanical evolution of the kinematic flux. Using the principle of virtual power and the laws of thermodynamics, thermodynamically-consistent equations are derived for the nonlocal plasticity yield criterion and associated flow rule. The presence of higher-order gradients in the plastic strain is shown to enhance a corresponding history variable which arises from the accumulation of the plastic strain gradients. Furthermore, anisotropy is introduced by plastic strain gradients in the form of kinematic hardening. Plastic strain gradients can be attributed to the net Burgers vector, while gradients in the accumulation of plastic strain are responsible for the introduction of isotropic hardening. The equilibrium between internal Cauchy stress and the microstresses conjugate to the higher-order gradients frames the yield criterion, which is obtained from the principle of virtual power. Microscopic boundary conditions, associated with plastic flow, are introduced to supplement the macroscopic boundary conditions of classical plasticity. The nonlocal formulation developed here preserves the classical assumption of local plasticity, wherein plastic flow direction is governed by the deviatoric Cauchy stress. The theory is applied to the problems of thin films on both soft and hard substrates. Numerical solutions are presented for bi-axial tension and simple shear loading of thin films on substrates.  相似文献   

15.
The second part of this paper compares and evaluates enhancements of the conventional plasticity theory by gradients of internal variables. Attention is focused on their performance as localization limiters. Both explicit and implicit gradient formulations are considered. It is shown that certain models suffer by serious mathematical deficiencies that would complicate their numerical implementation. Some other models are appropriate only at early stages of the softening process but later exhibit locking accompanied by a spurious expansion of the localized plastic zone. The comparative study indicates that a convenient and robust tool for regularized modeling of the entire localization process is provided by the implicit gradient approach combined with a suitable form of the hardening/softening law.  相似文献   

16.
A finite strain hyper elasto-plastic constitutive model capable to describe non-linear kinematic hardening as well as non-linear isotropic hardening is presented. In addition to the intermediate configuration and in order to model kinematic hardening, an additional configuration is introduced – the center configuration; both configurations are chosen to be isoclinic. The yield condition is formulated in terms of the Mandel stress and a back-stress with a structure similar to the Mandel stress.It is shown that the non-dissipative part of the plastic velocity gradient not governed by the thermodynamical framework and the corresponding quantity associated with the kinematic hardening influence the material behaviour to a large extent when kinematic hardening is present. However, for isotropic elasticity and isotropic hardening plasticity it is shown that the non-dissipative quantities have no influence upon the stress–strain relation.As an example, kinematic hardening von Mises plasticity is considered, which fulfils the plastic incompressibility condition and is independent of the hydrostatic pressure. To evaluate the response and to examine the influence of the non-dissipative quantities, simple shear is considered; no stress oscillations occur.  相似文献   

17.
Plastic flow localization in ductile materials subjected to pure shear loading and uniaxial tension is investigated respectively in this paper using a reduced strain gradient theory, which consists of the couple-stress (CS) strain gradient theory proposed by Fleck and Hutchinson (1993) and the strain gradient hardening (softening) law (C–W) proposed by Chen and Wang (2000). Unlike the classical plasticity framework, the initial thickness of the shear band and the strain rate distribution in both cases are predicted analytically using a bifurcation analysis. It shows that the strain rate is obviously non-uniform inside the shear band and reaches a maximum at the center of the shear band. The initial thickness of the shear band depends on not only the material intrinsic length lcs but also the material constants, such as the yield strength, ultimate tension strength, the linear hardening and softening shear moduli. Specially, in the uniaxial tension case, the most possible tilt angle of shear band localization is consistent qualitatively with the existing experimental observations. The results in this paper should be useful for engineers to predict the details of material failures due to plastic flow localization.  相似文献   

18.
A constitutive model is proposed for a class of filled elastomers exhibiting permanent strain at zero stress, in which hyper-visco-elasticity, plasticity and damage are only weakly coupled. The free energy is expressed as the sum of three terms: a hyperelastic term, a positive hardening function, and a negative damage function. The state relations are then established by postulating a dissipation potential and assuming Norton-Hoff type variations of plasticity and damage. An illustrative example of the model potentialities is given, concerning the Mullins' effect.  相似文献   

19.
In the framework of strain gradient plasticity, a solid body with boundary surface playing the role of a dissipative boundary layer endowed with surface tension and surface energy, is addressed. Using the so-called residual-based gradient plasticity theory, the state equations and the higher order boundary conditions are derived quite naturally for both the bulk material and the boundary layer. A phenomenological constitutive model is envisioned, in which the bulk material and the boundary layer obey (rate independent associative) coupled plasticity evolution laws, with kinematic hardening laws of differential nature for the bulk material, but of nondifferential nature for the layer. A combined global maximum dissipation principle is shown to hold. The higher order boundary conditions are discussed in details and categorized in relation to some peculiar features of the boundary surface, and their basic role in the coupling of the bulk/layer plasticity evolution laws is pointed out. The case of an internal interface is also studied. An illustrative example relating to a shear model exhibiting energetic size effects is presented. The theory provides a unified view on gradient plasticity with interfacial energy effects.  相似文献   

20.
The intent of this work is to derive a physically motivated mathematical form for the gradient plasticity that can be used to interpret the size effects observed experimentally. The step of translating from the dislocation-based mechanics to a continuum formulation is explored. This paper addresses a possible, yet simple, link between the Taylor’s model of dislocation hardening and the strain gradient plasticity. Evolution equations for the densities of statistically stored dislocations and geometrically necessary dislocations are used to establish this linkage. The dislocation processes of generation, motion, immobilization, recovery, and annihilation are considered in which the geometric obstacles contribute to the storage of statistical dislocations. As a result, a physically sound relation for the material length scale parameter is obtained as a function of the course of plastic deformation, grain size, and a set of macroscopic and microscopic physical parameters. Comparisons are made of this theory with experiments on micro-torsion, micro-bending, and micro-indentation size effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号