首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
针对准脆性材料的非线性特征:强度软化和刚度退化、单边效应、侧限强化和拉压软化、不可恢复变形、剪胀及非弹性体胀,在热动力学框架内,建立了准脆性材料的弹塑性与各向异性损伤耦合的本构关系。对准脆性材料的变形机理和损伤诱发的各向异性进行了诠释,并给出了损伤构形和有效构形中各物理量之间的关系。在有效应力空间内,建立了塑性屈服准则、拉压不同的塑性随动强化法则和各向同性强化法则。在损伤构形中,采用应变能释放率,建立了拉压损伤准则、拉压不同的损伤随动强化法则和各向同性强化法则。基于塑性屈服准则和损伤准则,构建了塑性势泛函和损伤势泛函,并由正交性法则,给出了塑性和损伤强化效应内变量的演化规律,同时,联立塑性屈服面和损伤加载面,给出了塑性流动和损伤演化内变量的演化法则。将损伤力学和塑性力学结合起来,建立了应变驱动的应力-应变增量本构关系,给出了本构数值积分的要点。以单轴加载-卸载往复试验识别和校准了本构材料常数,并对单轴单调试验、单轴加载-卸载往复试验、二轴受压、二轴拉压试验和三轴受压试验进行了预测,并与试验结果作了比较,结果表明,所建本构模型对准脆性材料的非线性材料性能有良好的预测能力。  相似文献   

2.
This work addresses the formulation of the thermodynamics of nonlocal plasticity using the gradient theory. The formulation is based on the nonlocality energy residual introduced by Eringen and Edelen (1972). Gradients are introduced for those variables associated with isotropic and kinematic hardening. The formulation applies to small strain gradient plasticity and makes use of the evanescent memory model for kinematic hardening. This is accomplished using the kinematic flux evolution as developed by Zbib and Aifantis (1988). Therefore, the present theory is a four nonlocal parameter-based theory that accounts for the influence of large variations in the plastic strain, accumulated plastic strain, accumulated plastic strain gradients, and the micromechanical evolution of the kinematic flux. Using the principle of virtual power and the laws of thermodynamics, thermodynamically-consistent equations are derived for the nonlocal plasticity yield criterion and associated flow rule. The presence of higher-order gradients in the plastic strain is shown to enhance a corresponding history variable which arises from the accumulation of the plastic strain gradients. Furthermore, anisotropy is introduced by plastic strain gradients in the form of kinematic hardening. Plastic strain gradients can be attributed to the net Burgers vector, while gradients in the accumulation of plastic strain are responsible for the introduction of isotropic hardening. The equilibrium between internal Cauchy stress and the microstresses conjugate to the higher-order gradients frames the yield criterion, which is obtained from the principle of virtual power. Microscopic boundary conditions, associated with plastic flow, are introduced to supplement the macroscopic boundary conditions of classical plasticity. The nonlocal formulation developed here preserves the classical assumption of local plasticity, wherein plastic flow direction is governed by the deviatoric Cauchy stress. The theory is applied to the problems of thin films on both soft and hard substrates. Numerical solutions are presented for bi-axial tension and simple shear loading of thin films on substrates.  相似文献   

3.
The generalized elastic material provides a reference model to cast in a unitary framework many structural models which are based on nonlinear monotone multivalued relations such as viscoelasticity, plasticity and unilateral models. The modified forms of the Hu-Washizu and Hellinger-Reissner principles and the displacement-based variational formulation are recovered for the generalized elastic material starting from a functional in the complete set of state variables. The related limitation principles are derived and their specialization to elasticity and elastoplasticity with mixed hardening are provided. It is shown that the interpolating fields for the pressure and the volumetric strain usually adopted in the B-bar method lead to a limitation principle. Accordingly the same elastic and elastoplastic solutions can be obtained by means of an approximate mixed displacement⧸pressure variational principle. A second application is concerned with the conditions ensuring the coincidence of the solutions between an approximate two-field mixed formulation and the displacement-based method. Numerical examples are provided to show the coincidence of the solutions obtained from different mixed finite element formulations, in elasticity or elastoplasticity, under the validity of the limitation principles.  相似文献   

4.
In the framework of numerical analysis of joined bodies, the present paper is devoted to the constitutive modeling, via an interface kinematic formulation, of mechanical behaviour of internal adhesive layers. The proposed interface constitutive model couples a cohesive behaviour, based on the damage mechanics theory, with a frictional one, defined in a non-associative plasticity framework. Namely, the interface formulation follows the transition of the adhesive material from the sound elastic condition to the fully cracked one. This formulation is able to model, by means of a specific interpretation of the damage variable and in a relevant mathematical setting, the interface intermediate mechanical properties, during the microcracks spreading process up to the discontinuity surface formation (macrocrack). The constitutive modeling is performed in fully compliance with the thermodynamic principles, in order to ensure the thermodynamic consistency requirement. In the present work, various monotonic and cyclic loading conditions are examined in order to show the main features of the constitutive formulation as well as several significant differences with respect to other existing models. Computational efficiency of the interface constitutive model is tested in a numerical application by FEM resolution strategy approach.  相似文献   

5.
Combinations of gradient plasticity with scalar damage and of gradient damage with isotropic plasticity are proposed and implemented within a consistently linearized format. Both constitutive models incorporate a Laplacian of a strain measure and an internal length parameter associated with it, which makes them suitable for localization analysis.The theories are used for finite element simulations of localization in a one-dimensional model problem. The physical relevance of coupling hardening/softening plasticity with damage governed by different damage evolution functions is discussed. The sensitivity of the results with respect to the discretization and to some model parameters is analyzed. The model which combines gradient-damage with hardening plasticity is used to predict fracture mechanisms in a Compact Tension test.  相似文献   

6.
Based on pair functional potentials, Cauchy-Born rule and slip mechanism, a material model assembling with spring-bundle components, a cubage component and slip components is established to describe the elasto-plastic damage constitutive relation under finite deformation. The expansion/shrink, translation and distortion of yield surfaces can be calculated based on the hardening rule and Bauschinger effect defined on the slip component level. Both kinematic and isotropic hardening are included. Numerical simulations and predictions under tension, torsion, and combined tension-torsion proportional/non-proportional loading are performed to obtain the evolution of subsequent yield surfaces and elastic constants and compare with two sets of experimental data in literature, one for a very low work hardening aluminum alloy Al 6061-T6511, and another for a very high work hardening aluminum alloy annealed 1100 Al. The feature of the yield surface in shape change, which presents a sharp front accompanied by a blunt rear under proportional loading, is described by the latent hardening and Bauschinger effect of slip components. Further, the evolution law of subsequent yield surfaces under different proportional loading paths is investigated in terms of their equivalence. The numerical simulations under non-proportional loading conditions for annealed 1100 Al are performed, and the subsequent yield surfaces exhibit mixed cross effect because the kinematic hardening and isotropic hardening follow different evolution tendency when loading path changes. The results of non-proportional loading demonstrate that the present model has the ability to address the issue of complex loading due to the introduction of state variables on slip components. Moreover, as an elasto-plastic damage constitutive model, the present model can also reflect the variation of elastic constants through damage defined on the spring-bundle components.  相似文献   

7.
In metal grains one of the most important failure mechanisms involves shear band localization. As the band width is small, the deformations are affected by material length scales. To study localization in single grains a rate-dependent crystal plasticity formulation for finite strains is presented for metals described by the reformulated Fleck–Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered. Furthermore, it is illustrated how different hardening functions affect the formation of shear bands.  相似文献   

8.
A phenomenological model for hardening–softening elasto-plasticity coupled with damage is presented. Specific kinematic internal variables are used to describe the mechanical state of the system. These, in the hypothesis of infinitesimal changes of configuration, are partitioned in the sum of a reversible and an irreversible part. The constitutive equations, developed in the framework of the Generalised Standard Material Model, are derived for reversible processes from an internal energy functional, postulated as the sum of the deformation energy and of the hardening energy both coupled with damage, while for irreversible phenomena from a dissipation functional.Performing duality transformations, the conjugated potentials of the complementary elastic energy and of the complementary dissipation are obtained. From the latter a generalised elastic domain in the extended space of stresses and thermodynamic forces is derived. The model, which is completely formulated in the space of actual stresses, is compared with other formulations based on the concept of effective stresses in the case of isotropic damage. It is observed that such models are consistent only for particular choices of the damage coupling. Finally, the predictions of the proposed model for some simple processes are analysed.  相似文献   

9.
10.
A framework is described for the development of a thermodynamically consistent plastic directional-damage-contact model for concrete. This framework is used as a basis for a new model, named Craft, which uses planes of degradation that can undergo damage and separation but which can regain contact according to a contact state function. The thermodynamic validity of the resulting model is considered in detail, and is proved for certain cases and demonstrated numerically for others. The model has a fully integrated plasticity component that uses a smooth triaxial yield surface and frictional hardening–softening functions. A new type of consistency condition is introduced for simultaneously maintaining both local and global constitutive relationships as well as stress transformation relationships. The introduction of contact theory provides the model with the ability to simulate the type of delayed aggregate interlock behavior exhibited by fully open crack surfaces that subsequently undergo significant shear movement. The model has been implemented in a constitutive driver program as well as a finite element program. The model is assessed against a range of experimental data, which includes data from uniaxial tension tests with and without unloading–reloading cycles, tests in which cracks are formed and then loaded in shear, and uniaxial, biaxial and triaxial compression tests.  相似文献   

11.
12.
13.
Internal state variable rate equations are cast in a continuum framework to model void nucleation, growth, and coalescence in a cast Al–Si–Mg aluminum alloy. The kinematics and constitutive relations for damage resulting from void nucleation, growth, and coalescence are discussed. Because damage evolution is intimately coupled with the stress state, internal state variable hardening rate equations are developed to distinguish between compression, tension, and torsion straining conditions. The scalar isotropic hardening equation and second rank tensorial kinematic hardening equation from the Bammann–Chiesa–Johnson (BCJ) Plasticity model are modified to account for hardening rate differences under tension, compression, and torsion. A method for determining the material constants for the plasticity and damage equations is presented. Parameter determination for the proposed phenomenological nucleation rate equation, motivated from fracture mechanics and microscale physical observations, involves counting nucleation sites as a function of strain from optical micrographs. Although different void growth models can be included, the McClintock void growth model is used in this study. A coalescence model is also introduced. The damage framework is then evaluated with respect to experimental tensile data of notched Al–Si–Mg cast aluminum alloy specimens. Finite element results employing the damage framework are shown to illustrate its usefulness.  相似文献   

14.
A thermodynamic framework is introduced for damage models. This framework, which consists in adding internal variables called complementary variables, lies within the framework of standard materials whose convex domain of admissible forces does not depend on the present state of internal variables. Thus its advantages are kept. Marigo's model is put back in this framework and another example combining isotropic and kinematic hardening is given. To cite this article: A. Cimetière et al., C. R. Mecanique 331 (2003).  相似文献   

15.
In this contribution various aspects of an anisotropic damage model coupled to plasticity are considered. The model is formulated within the thermodynamic framework and implements a strong coupling between plasticity and damage. The constitutive equations for the damaged material are written according to the principle of strain energy equivalence between the virgin material and the damaged material. The damaged material is modeled using the constitutive laws of the effective undamaged material in which the nominal stresses are replaced by the effective stresses. The model considers different interaction mechanisms between damage and plasticity defects in such a way that two-isotropic and two-kinematic hardening evolution equations are derived, one of each for the plasticity and the other for the damage. An additive decomposition of the total strain into elastic and inelastic parts is adopted in this work. The elastic part is further decomposed into two portions, one is due to the elastic distortion of the material grains and the other is due to the crack closure and void contraction. The inelastic part is also decomposed into two portions, one is due to nucleation and propagation of dislocations and the other is due to the lack of crack closure and void contraction. Uniaxial tension tests with unloadings have been used to investigate the damage growth in high strength steel. A good agreement between the experimental results and the model is obtained.  相似文献   

16.
This paper deals with a formulation of nonlocal and gradient plasticity with internal variables. The constitutive model complies with local internal variables which govern kinematic hardening and isotropic softening and with a nonlocal corrective internal variable defined either as the sum between a new internal variable and its spatial weighted average or as the gradient of a measure of plastic strain. The rate constitutive problem is cast in the framework provided by the convex analysis and the potential theory for monotone multivalued operators which provide the suitable tools to perform a theoretical analysis of such nonlocal and gradient problems. The validity of the maximum dissipation theorem is assessed and constitutive variational formulations of the rate model are provided. The structural rate problem for an assigned load rate is then formulated. The related variational formulation in the complete set of state variable is contributed and the methodology to derive variational formulations, with different combinations of the state variables, is explicitly provided. In particular the generalization to the present nonlocal and gradient model of the principles of Prager–Hodge, Greenberg and Capurso–Maier is presented. Finally nonlocal variational formulations provided in the literature are derived as special cases of the proposed model.  相似文献   

17.
18.
In the framework of strain gradient plasticity, a solid body with boundary surface playing the role of a dissipative boundary layer endowed with surface tension and surface energy, is addressed. Using the so-called residual-based gradient plasticity theory, the state equations and the higher order boundary conditions are derived quite naturally for both the bulk material and the boundary layer. A phenomenological constitutive model is envisioned, in which the bulk material and the boundary layer obey (rate independent associative) coupled plasticity evolution laws, with kinematic hardening laws of differential nature for the bulk material, but of nondifferential nature for the layer. A combined global maximum dissipation principle is shown to hold. The higher order boundary conditions are discussed in details and categorized in relation to some peculiar features of the boundary surface, and their basic role in the coupling of the bulk/layer plasticity evolution laws is pointed out. The case of an internal interface is also studied. An illustrative example relating to a shear model exhibiting energetic size effects is presented. The theory provides a unified view on gradient plasticity with interfacial energy effects.  相似文献   

19.
Soil elastic moduli are highly pressure-dependent. Experimental findings have indicated that the elastic shear modulus of sands depends on pχ, where p is mean principal effective stress and χ is a non-dimensional parameter. χ practically remains unchanged for shear strains less than 10−5 where the mechanical behavior is purely elastic. However, experiments have revealed that the emergence of plasticity for shear strains larger than 10−5 provokes a gradual increase in χ. Technically, this observation is an elastic–plastic coupling effect in which plasticity causes to change the elastic characteristics. Here, this issue is considered in hyper-elasticity framework in conjunction with a critical state compatible bounding surface plasticity platform for granular soils. To this aim, constitutive equations linking χ to a proper kinematic hardening parameter are presented. Then, using the proposed approach, a hyper-elastic theory is modified to consider the mentioned elastic–plastic coupling effect in the whole domain of the elastoplastic behavior. Adopting the improved hyper-elasticity necessitates the modification of a number of basic plasticity platform elements. In this regard, dilatancy and plastic hardening modulus of the bounding surface platform are modified. Successful performance of the modified constitutive model is presented against experimental data of loading/unloading triaxial tests.  相似文献   

20.
A rate dependent strain gradient crystal plasticity framework is presented where the displacement and the plastic slip fields are considered as primary variables. These coupled fields are determined on a global level by solving simultaneously the linear momentum balance and the slip evolution equation, which is derived in a thermodynamically consistent manner. The formulation is based on the 1D theory presented in Yalcinkaya et al. (2011), where the patterning of plastic slip is obtained in a system with non-convex energetic hardening through a phenomenological double-well plastic potential. In the current multi-dimensional multi-slip analysis the non-convexity enters the framework through a latent hardening potential presented in Ortiz and Repettto (1999) where the microstructure evolution is obtained explicitly via a lamination procedure. The current study aims the implicit evolution of deformation patterns due to the incorporated physically based non-convex potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号