首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents the first application of peridynamics theory for crystal plasticity simulations. A state-based theory of peridynamics is used (Silling et al., 2007) where the forces in the bonds between particles are computed from stress tensors obtained from crystal plasticity. The stress tensor at a particle, in turn, is computed from strains calculated by tracking the motion of surrounding particles. We have developed a quasi-static implementation of the peridynamics theory. The code employs an implicit iterative solution procedure similar to a non-linear finite element implementation. Peridynamics results are compared with crystal plasticity finite element (CPFE) analysis for the problem of plane strain compression of a planar polycrystal. The stress, strain field distribution and the texture formation predicted by CPFE and peridynamics were found to compare well. One particular feature of peridynamics is its ability to model fine shear bands that occur naturally in deforming polycrystalline aggregates. Peridynamics simulations are used to study the origin and evolution of these shear bands as a function of strain and slip geometry.  相似文献   

2.
A scale dependent crystal viscoplasticity model with a second strain gradient effect is introduced, as a simple extension of the conventional crystal plasticity theory. We confine attention to a single crystal undergoing slip on a single slip system under small strain conditions. Connections between this model and other existing theories are investigated in some detail. Furthermore, some basic predictions of the model, due to the second gradients and the material viscosity, are illustrated, using a constrained simple shear problem for a thin strip bounded by two rigid walls. The effect of viscosity on evolution of the boundary layer is examined, as well as the behavior of the thin strip undergoing reverse/cyclic shear loading, and the ability to predict plastic flow localization.  相似文献   

3.
This is a study of plastic strain localization, surface roughening and of the origin of these phenomena in polycrystals. An oligocrystal aluminum sample with a single quasi-2D layer of coarse grains is plastically deformed under uniaxial tensile loading. During deformation, the history of strain localization, surface roughening, microstructure and in-grain fragmentation is carefully recorded. Using a crystal plasticity finite element model, corresponding high-resolution simulations are conducted. A series of comparisons identifying aspects of good and of less good match between model predictions and experiments is presented. The study suggests that the grain topology and microtexture have a significant influence on the origin of strain heterogeneity. Moreover, it suggests that the final surface roughening profiles are related both to the macro strain localization and to the intra-grain interaction. Finally slip lines observed on the surface of the samples are used to probe the activation of slip systems in detail. The study concludes with an assessment of the limitations of the crystal plasticity model.  相似文献   

4.
边坡稳定的剪切带计算   总被引:2,自引:0,他引:2  
为了解决边坡稳定分析中剪切带有限元网格的依赖性问题,采用梯度塑性理论,从本构关系中引入特征长度入手,建立计算模型。提出了一种8节点缩减积分的梯度塑性单元,并采用梯度塑性理论推导了Drucker-Prager屈服准则的软化模型的有限元格式,在ABAQUS中进行了二次开发,嵌入了本文提出的8节点单元和本构模型,并用ABAQUS软件进行了边坡剪切带的计算。计算结果表明,本文提出的方法消除了经典有限元计算的网格依赖性问题,可以得到与单元剖分无关的稳定的剪切带宽度。本文所提出的方法可适用于其他场合的剪切带计算。  相似文献   

5.
The purpose of this paper is to demonstrate the improved modeling accuracy of a finite-deformation strain gradient crystal plasticity formulation over its classical counterpart by conducting a joint experimental and numerical investigation of the microscopic details of the deformation of a whisker-reinforced metal-matrix composite. The lattice rotation distribution around whiskers is obtained in thin foils using a TEM technique and is then correlated with numerical predictions based on finite element analyses of a unit-cell of a single crystal matrix containing a rigid whisker. The matrix material is first characterized by a classical, scale-independent crystal plasticity theory. It is found that the classical theory predicts a lattice rotation distribution with a spatial gradient much higher than experimentally measured. A strain gradient crystal plasticity formulation is then applied to model the matrix. The strain gradient formulation accounts for both strain hardening and strain gradient hardening. The deformation thus predicted exhibits a strong dependence on the size of the whisker. For a constitutive length scale comparable to the whisker diameter, the spatial gradient of the lattice rotation is several times lower than that predicted by the classical theory, and hence correlates significantly better with the experimental results.  相似文献   

6.
Localization phenomena in thin sheets subjected to plane stress tension are investigated. The sheet is modelled as a polycrystalline aggregate, and a finite element analysis based on rate-dependent crystal plasticity is developed to simulate large strain behaviour. Accordingly, each material point in the specimen is considered to be a polycrystalline aggregate consisting of a large number of FCC grains. The Taylor model of crystal plasticity theory is assumed. This analysis accounts for initial textures as well as texture evolution during large plastic deformations. The numerical analysis incorporates certain parallel computing features. Simulations have been carried out for an aluminum sheet alloy, and the effects of various parameters on the formation and prediction of localized deformation (in the form of necking and/or in-plane shear bands) are examined.  相似文献   

7.
A finite strain generalization of the strain gradient plasticity theory by Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001a) 2245) is proposed and used to study size effects in plane strain necking of thin sheets using the finite element method. Both sheets with rigid grips at the ends and specimens with shear free ends are analyzed. The strain gradient plasticity theory predicts delayed onset of localization when compared to conventional theory, and it depresses deformation localization in the neck. The sensitivity to imperfections is analyzed as well as differently hardening materials.  相似文献   

8.
A thermal-mechanical multiresolution continuum theory is applied within a finite element framework to model the initiation and propagation of dynamic shear bands in a steel alloy. The shear instability and subsequent stress collapse, which are responsible for dynamic adiabatic shear band propagation, are captured by including the effects of shear driven microvoid damage in a single constitutive model. The shear band width during propagation is controlled via a combination of thermal conductance and an embedded evolving length scale parameter present in the multiresolution continuum formulation. In particular, as the material reaches a shear instability and begins to soften, the dominant length scale parameter (and hence shear band width) transitions from the alloy grain size to the spacing between micro-voids. Emphasis is placed on modeling stress collapse due to micro-void damage while simultaneously capturing the appropriate scale of inhomogeneous deformation. The goal is to assist in the microscale optimization of alloys which are susceptible to shear band failure.  相似文献   

9.
Plastic flow localization in ductile materials subjected to pure shear loading and uniaxial tension is investigated respectively in this paper using a reduced strain gradient theory, which consists of the couple-stress (CS) strain gradient theory proposed by Fleck and Hutchinson (1993) and the strain gradient hardening (softening) law (C–W) proposed by Chen and Wang (2000). Unlike the classical plasticity framework, the initial thickness of the shear band and the strain rate distribution in both cases are predicted analytically using a bifurcation analysis. It shows that the strain rate is obviously non-uniform inside the shear band and reaches a maximum at the center of the shear band. The initial thickness of the shear band depends on not only the material intrinsic length lcs but also the material constants, such as the yield strength, ultimate tension strength, the linear hardening and softening shear moduli. Specially, in the uniaxial tension case, the most possible tilt angle of shear band localization is consistent qualitatively with the existing experimental observations. The results in this paper should be useful for engineers to predict the details of material failures due to plastic flow localization.  相似文献   

10.
In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain is characterized in terms of an elastic–viscoplastic continuum slip constitutive relation. First, a simple model analysis in which the shear band is assumed to occur in a weaker thin slice of material is performed. From this simple model analysis, two important quantities regarding shear band formation are obtained: i.e. the critical strain at the onset of shear banding and the corresponding orientation of shear band. Second, the shear band development in plane strain tension/compression is analyzed by the finite element method. Predictability of the finite element analysis is compared to that of the simple model analysis. Third, shear band developments in plane strain pure bending of a sheet specimen with the typical textures are studied. Regions near the surfaces in a bent sheet specimen are approximately subjected to plane strain tension or compression. From this viewpoint, the bendability of a sheet specimen may be evaluated, using the knowledge regarding shear band formation in plane strain tension/compression. To confirm this and to encompass overall deformation of a bent sheet specimen, including shear bands, finite element analyses of plane strain pure bending are carried out, and the predicted shear band formation in bent specimens is compared to that in the tension/compression problem. Finally, the present results are compared to previous related studies, and the efficiency of the present method for materials design in future is discussed.  相似文献   

11.
A finite strain viscoplastic nonlocal plasticity model is formulated and implemented numerically within a finite element framework. The model is a viscoplastic generalisation of the finite strain generalisation by Niordson and Redanz (2004) [Journal of the Mechanics and Physics of Solids 52, 2431–2454] of the strain gradient plasticity theory proposed by Fleck and Hutchinson (2001) [Journal of the Mechanics and Physics of Solids 49, 2245–2271]. The formulation is based on a viscoplastic potential that enables the formulation of the model so that it reduces to the strain gradient plasticity theory in the absence of viscous effects. The numerical implementation uses increments of the effective plastic strain rate as degrees of freedom in addition to increments of displacement. To illustrate predictions of the model, results are presented for materials containing either voids or rigid inclusions. It is shown how the model predicts increased overall yield strength, as compared to conventional predictions, when voids or inclusions are in the micron range. Furthermore, it is illustrated how the higher order boundary conditions at the interface between inclusions and matrix material are important to the overall yield strength as well as the material hardening.  相似文献   

12.
In general, the shear localization process involves initiation and growth. Initiation is expected to be a stochastic process in material space where anisotropy in the elastic-plastic behavior of single crystals and inter-crystalline interactions serve to form natural perturbations to the material's local stability. A hat-shaped sample geometry was used to study shear localization growth. It is an axi-symmetric sample with an upper “hat” portion and a lower “brim” portion with the shear zone located between the hat and brim. The shear zone length was 870-890 μm with deformation imposed through a Split-Hopkinson Pressure Bar system at maximum top-to-bottom velocity in the range of 8-25 m/s. The deformation behavior of tantalum tophat samples is modeled through direct polycrystal simulations. An embedded Voronoï-tessellated two-dimensional microstructure is used to represent the material within the shear zone of the sample. A thermo-mechanically coupled elasto-viscoplastic single crystal model is presented and used to represent the response of the grains within the aggregate shear zone. In the shoulder regions away from the shear zone where strain levels remain on the order of 0.05, the material is represented by an isotropic J2 flow theory based upon the elasto-viscoplastic Mechanical Threshold Stress (MTS) model for flow strength. The top surface stress versus displacement results were compared to those of the experiments and over-all the simulated stress magnitude is over-predicted. It is believed that the reason for this is that the simulations are two-dimensional. A region within the numerical shear zone was isolated for statistical examination. The vonMises stress state within this isolated shear zone region suggests an approximate normal distribution with a factor of two difference between the minimum and maximum points in the distribution. The equivalent plastic strain distribution within this same region has values ranging between 0.4 and 1.5 and is not symmetric. Other material state distributions are also given. The crystallographic texture within this isolated shear zone is also compared to the experimental texture and found to match reasonably well considering the simulations are two-dimensional.  相似文献   

13.
The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation, the dislocations are all of edge character and are modelled as line singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation and strain gradient plasticity formulations predict a negligible size effect under shear loading. By contrast, under equi-biaxial loading both plasticity formulations predict a strong size dependence with the flow strength approximately scaling inversely with the void spacing. Excellent agreement is obtained between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be (about 10 times the slip plane spacing in the discrete dislocation models).  相似文献   

14.
15.
For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation (GND) densities supplement the conventional theory within a non-work-conjugate framework in which there is no need to introduce higher-order microscopic stresses that would be work-conjugate to slip rate gradients. We discuss its connection to a work-conjugate type of finite deformation gradient crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution for the small deformation theory. As in a previous formulation for small deformation, the present formulation applies to the context of multiple and three-dimensional slip deformations.  相似文献   

16.
Severe numerical instability in the integration of rate dependent crystal plasticity (RDCP) model is one of the main problems for implementing RDCP into finite element method (FEM), especially for simulating dynamic/transient forming process containing complicated contact conditions under large step length, large strain and high strain rate. In order to overcome the problem, an implicit model is deduced with the primary unknowns of shear strain increments of slip systems under the corotational coordinate system in the paper. The homotopy auto-changing continuation method combined with the Newton–Raphson (N–R) iteration is adopted. The subroutine VUMAT is developed for implementing RDCP model in ABAQUS/Explicit. Simulation results show that the algorithm is stable and accurate in 3D FE simulations on both dynamic simple loading and complicated loading process containing nonlinear contacts under the conditions of the maximal step length of 3.5 × 10−6 s, the maximal strain of 1.05, the maximal loading speed of 120 mm s−1, and the minimal material rate sensitivity coefficient of 0.01. The predictions of the model on crystal behaviors of anisotropy, rate sensitivity and elasticity, as well as ear profiles in deep cup drawing are in agreement with experiments.  相似文献   

17.
18.
The predominant deformation mode during material failure is shear. In this paper, a crystal plasticity scheme for explicit time integration codes is developed based on a forward Euler algorithm. The numerical model is incorporated in the UMAT subroutine for implementing rate-dependent crystal plasticity model in LS-DYNA/Explicit. The sheet is modeled as a face centered cubic (FCC) polycrystalline aggregate, and a finite element analysis based on rate-dependent crystal plasticity is implemented to analyze the effects of three different strain paths consisting predominantly of shear. Finite element meshes containing texture data are created with solid elements. The material model can incorporate information obtained from electron backscatter diffraction (EBSD) and apply crystal orientation to each element as well as account for texture evolution. Single elements or multiple elements are used to represent each grain within a microstructure. The three dimensional (3D) polycrystalline microstructure of the aluminum alloy AA5754 is modeled and subjected to three different strain rates for each strain path. The effects of strain paths, strain rates and thermal softening on the formation of localized deformation are investigated. Simulations show that strain path is the most dominant factor in localized deformation and texture evolution.  相似文献   

19.
The effect of void size on void growth in single crystals with uniformly distributed cylindrical voids is studied numerically using a finite deformation strain gradient crystal plasticity theory with an intrinsic length parameter. A plane strain cell model is analyzed for a single crystal with three in-plane slip systems. It is observed that small voids allow much larger overall stress levels than larger voids for all the stress triaxialities considered. The amount of void growth is found to be suppressed for smaller voids at low stress triaxialities. Significant differences are observed in the distribution of slips and on the shape of the deformed voids for different void sizes. Furthermore, the orientation of the crystalline lattice is found to have a pronounced effect on the results, especially for the smaller void sizes.  相似文献   

20.
The phenomenon of earing is investigated in the present study based on the theory of crystal plasticity with the dynamic explicit finite element program developed. Firstly texture analysis is carried out of rolled aluminium alloy Al5052 by means of X-ray technique. Then from the texture coefficients an analytical expression for the orientation distribution function (ODF) is derived making use of the computer algebraic language Mathematica4.0, which makes it easier to discretize the ODF into a series of Eulerian angles representing the distribution of lattices and further the preferred orientation (texture) of crystals of the original sheets. For the polycrystal model, the material is described using crystal plasticity where each material point in grains with each grain modelled as an FCC crystal with 12 distinct slip systems. The modified Taylor theory of crystal plasticity is used and only the initial texture is taken into consideration during large plastic deformation. Numerical simulation of earing has been performed for an aluminium sheet with texture and one with crystals exhibiting random distribution to demonstrate the effect of texture of materials on their plastic anisotropy and formability. Project supported by the National Natural Science Foundation of China (No. 59875025).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号