首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple finite difference scheme over a non‐uniform grid is proposed to solve the two‐dimensional, steady Navier–Stokes equations. Instead of the Newton method, a more straightforward line search algorithm is used to solve the resultant system of non‐linear equations. By adopting the multigrid methodology, a fast convergence is achieved, at least for low‐Reynolds number flow. This scheme is applied, in particular, to flow between eccentric rotating cylinders. The computed results are shown in good agreement with some analytic findings. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, the Navier–Stokes equations are solved numerically for axisymmetric and planar sudden expansion flows. The flow is considered laminar and steady state, and the fluid is incompressible. Finite difference equations are obtained using a control volume method in a non‐staggered grid arrangement, and solved by line‐by‐line TDMA technique using the SIMPLEM (SIMPLEM‐Modified) algorithm. Calculations are performed for higher expansion ratios, β, ranging from 1.5 to 10 and Reynolds numbers from 0.1 to 500. Results are presented in terms of streamlines, relative eddy intensity, location of the eddy center, and the eddy reattachment length depending on Re number and β values for both axisymmetric and planar sudden expansions. It is aimed to provide a picture of the effects of high values of expansion ratio and Reynolds number on the sudden expansion flow. As a result, it is found that the flow characteristics keep their structure for both higher expansion ratios and higher Reynolds numbers. Further, correlations were developed for the nondimensional eddy reattachment length, location of the eddy center and the relative eddy intensity, which have agreeable results to the computed results available from the literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Body conforming orthogonal grids were generated using a fast hyperbolic method for aerofoils, and were used to solve the Navier–Stokes equation in the generalized orthogonal system for the first time for time accurate simulation of incompressible flow. For grid generation, the Beltrami equation and the definition equation for the orthogonality are solved using a finite difference method. The grids generated around aerofoils by this method have better orthogonality than the results published by earlier investigators. The Navier–Stokes equation at Reynolds numbers of 3000 and 35 000 for NACA 0012 and NACA 0015 respectively, have been solved as an application. The obtained results match quite well with the corresponding experimental results. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the results of a numerical study on the flow characteristics and heat transfer over two equal square cylinders in a tandem arrangement. Spacing between the cylinders is five widths of the cylinder and the Reynolds number ranges from 1 to 200, Pr=0.71. Both steady and unsteady incompressible laminar flow in the 2D regime are performed with a finite volume code based on the SIMPLEC algorithm and non‐staggered grid. A study of the effects of spatial resolution and blockage on the results is provided. In this study, the instantaneous and mean streamlines, vorticity and isotherm patterns for different Reynolds numbers are presented and discussed. In addition, the global quantities such as pressure and viscous drag coefficients, RMS lift and drag coefficients, recirculation length, Strouhal number and Nusselt number are determined and discussed for various Reynolds numbers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In the present investigation, a Fourier analysis is used to study the phase and group speeds of a linearized, two‐dimensional shallow water equations, in a non‐orthogonal boundary‐fitted co‐ordinate system. The phase and group speeds for the spatially discretized equations, using the second‐order scheme in an Arakawa C grid, are calculated for grids with varying degrees of non‐orthogonality and compared with those obtained from the continuous case. The spatially discrete system is seen to be slightly dispersive, with the degree of dispersivity increasing with an decrease in the grid non‐orthogonality angle or decrease in grid resolution and this is in agreement with the conclusions reached by Sankaranarayanan and Spaulding (J. Comput. Phys., 2003; 184 : 299–320). The stability condition for the non‐orthogonal case is satisfied even when the grid non‐orthogonality angle, is as low as 30° for the Crank Nicolson and three‐time level schemes. A two‐dimensional wave deformation analysis, based on complex propagation factor developed by Leendertse (Report RM‐5294‐PR, The Rand Corp., Santa Monica, CA, 1967), is used to estimate the amplitude and phase errors of the two‐time level Crank–Nicolson scheme. There is no dissipation in the amplitude of the solution. However, the phase error is found to increase, as the grid angle decreases for a constant Courant number, and increases as Courant number increases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
A new method for computing the fluid flow in complex geometries using highly non‐smooth and non‐orthogonal staggered grid is presented. In a context of the SIMPLE algorithm, pressure and physical tangential velocity components are used as dependent variables in momentum equations. To reduce the sensitivity of the curvature terms in response to coordinate line orientation change, these terms are exclusively computed using Cartesian velocity components in momentum equations. The method is then used to solve some fairly complicated 2‐D and 3‐D flow field using highly non‐smooth grids. The accuracy of results on rough grids (with sharp grid line orientation change and non‐uniformity) was found to be high and the agreement with previous experimental and numerical results was quite good. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Hybrid models have found widespread applications for simulation of wall‐bounded flows at high Reynolds numbers. Typically, these models employ Reynolds‐averaged Navier–Stokes (RANS) and large eddy simulation (LES) in the near‐body and off‐body regions, respectively. A number of coupling strategies between the RANS and LES regions have been proposed, tested, and applied in the literature with varying degree of success. Linear eddy‐viscosity models (LEVM) are often used for the closure of turbulent stress tensor in RANS and LES regions. LEVM incorrectly predicts the anisotropy of Reynolds normal stress at the RANS‐LES interface region. To overcome this issue, use of non‐linear eddy‐viscosity models (NLEVM) have started receiving attention. In this study, a generic non‐linear blended modeling framework for performing hybrid simulations is proposed. Flow over the periodic hills is used as the test case for model evaluation. This case is chosen due to complex flow physics with simplified geometry. Analysis of the simulations suggests that the non‐linear hybrid models show a better performance than linear hybrid models. It is also observed that the non‐linear closures are less sensitive to the RANS‐LES coupling and grid resolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the global method of differential quadrature (DQ) is applied to solve three‐dimensional Navier–Stokes equations in primitive variable form on a non‐staggered grid. Two numerical approaches were proposed in this work, which are based on the pressure correction process with DQ discretization. The essence in these approaches is the requirement that the continuity equation must be satisfied on the boundary. Meanwhile, suitable boundary condition for pressure correction equation was recommended. Through a test problem of three‐dimensional driven cavity flow, the performance of two approaches was comparatively studied in terms of the accuracy. The numerical results were obtained for Reynolds numbers of 100, 200, 400 and 1000. The present results were compared well with available data in the literature. In this work, the grid‐dependence study was done, and the benchmark solutions for the velocity profiles along the vertical and horizontal centrelines were given. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A numerical fluid–structure interaction model is developed for the analysis of viscous flow over elastic membrane structures. The Navier–Stokes equations are discretized on a moving body‐fitted unstructured triangular grid using the finite volume method, taking into account grid non‐orthogonality, and implementing the SIMPLE algorithm for pressure solution, power law implicit differencing and Rhie–Chow explicit mass flux interpolations. The membrane is discretized as a set of links that coincide with a subset of the fluid mesh edges. A new model is introduced to distribute local and global elastic effects to aid stability of the structure model and damping effects are also included. A pseudo‐structural approach using a balance of mesh edge spring tensions and cell internal pressures controls the motion of fluid mesh nodes based on the displacements of the membrane. Following initial validation, the model is applied to the case of a two‐dimensional membrane pinned at both ends at an angle of attack of 4° to the oncoming flow, at a Reynolds number based on the chord length of 4 × 103. A series of tests on membranes of different elastic stiffness investigates their unsteady movements over time. The membranes of higher elastic stiffness adopt a stable equilibrium shape, while the membrane of lowest elastic stiffness demonstrates unstable interactions between its inflated shape and the resulting unsteady wake. These unstable effects are shown to be significantly magnified by the flexible nature of the membrane compared with a rigid surface of the same average shape. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
This paper reports on the implementation and testing, within a full non‐linear multi‐grid environment, of a new pressure‐based algorithm for the prediction of multi‐fluid flow at all speeds. The algorithm is part of the mass conservation‐based algorithms (MCBA) group in which the pressure correction equation is derived from overall mass conservation. The performance of the new method is assessed by solving a series of two‐dimensional two‐fluid flow test problems varying from turbulent low Mach number to supersonic flows, and from very low to high fluid density ratios. Solutions are generated for several grid sizes using the single grid (SG), the prolongation grid (PG), and the full non‐linear multi‐grid (FMG) methods. The main outcomes of this study are: (i) a clear demonstration of the ability of the FMG method to tackle the added non‐linearity of multi‐fluid flows, which is manifested through the performance jump observed when using the non‐linear multi‐grid approach as compared to the SG and PG methods; (ii) the extension of the FMG method to predict turbulent multi‐fluid flows at all speeds. The convergence history plots and CPU‐times presented indicate that the FMG method is far more efficient than the PG method and accelerates the convergence rate over the SG method, for the problems solved and the grids used, by a factor reaching a value as high as 15. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
An incompressible Navier–Stokes solver using curvilinear body‐fitted collocated grid has been developed to solve unconfined flow past arbitrary two‐dimensional body geometries. In this solver, the full Navier–Stokes equations have been solved numerically in the physical plane itself without using any transformation to the computational plane. For the proper coupling of pressure and velocity field on collocated grid, a new scheme, designated ‘consistent flux reconstruction’ (CFR) scheme, has been developed. In this scheme, the cell face centre velocities are obtained explicitly by solving the momentum equations at the centre of the cell faces. The velocities at the cell centres are also updated explicitly by solving the momentum equations at the cell centres. By resorting to such a fully explicit treatment considerable simplification has been achieved compared to earlier approaches. In the present investigation the solver has been applied to unconfined flow past a square cylinder at zero and non‐zero incidence at low and moderate Reynolds numbers and reasonably good agreement has been obtained with results available from literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The flow around spherical, solid objects is considered. The boundary conditions on the solid boundaries have been applied by replacing the boundary with a surface force distribution on the surface, such that the required boundary conditions are satisfied. The velocity on the boundary is determined by extrapolation from the flow field. The source terms are determined iteratively, as part of the solution. They are then averaged and are smoothed out to nearby computational grid points. A multi‐grid scheme has been used to enhance the computational efficiency of the solution of the force equations. The method has been evaluated for flow around both moving and stationary spherical objects at very low and intermediate Reynolds numbers. The results shows a second order accuracy of the method both at creeping flow and at Re=100. The multi‐grid scheme is shown to enhance the convergence rate up to a factor 10 as compared to single grid approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
This paper describes the three‐dimensional elliptic grid generation. The two‐dimensional approach for the control functions obtained by modifying the Thomas–Middlecoff method is applied on the planes perpendicular to the main flow direction co‐ordinate, which is assumed to be the function of only one corresponding co‐ordinate in the computational domain. The grid orthogonality is improved by about 40 per cent compared with that of the algebraic initial grid. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
This paper reports on a numerical algorithm for the steady flow of viscoelastic fluid. The conservative and constitutive equations are solved using the finite volume method (FVM) with a hybrid scheme for the velocities and first‐order upwind approximation for the viscoelastic stress. A non‐uniform staggered grid system is used. The iterative SIMPLE algorithm is employed to relax the coupled momentum and continuity equations. The non‐linear algebraic equations over the flow domain are solved iteratively by the symmetrical coupled Gauss–Seidel (SCGS) method. In both, the full approximation storage (FAS) multigrid algorithm is used. An Oldroyd‐B fluid model was selected for the calculation. Results are reported for planar 4:1 abrupt contraction at various Weissenberg numbers. The solutions are found to be stable and smooth. The solutions show that at high Weissenberg number the domain must be long enough. The convergence of the method has been verified with grid refinement. All the calculations have been performed on a PC equipped with a Pentium III processor at 550 MHz. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical investigation on low‐Reynolds‐number external aerodynamics was conducted using the transitional unsteady Reynolds‐averaged Navier–Stokes shear stress transport γ ?Reθ model and the ANSYS‐CFX computational fluid dynamics suite. The NACA 0012 airfoil was exposed to chord‐based Reynolds numbers of 5.0 ×104, 1.0 ×105 and 2.5 ×105 at 0°, 4°and 8°angles of attack. Time‐averaged and instantaneous flow features were extracted and compared with fully turbulent shear stress transport results, XFLR5 panel e N method results, and published higher order numerical and experimental studies. The current model was shown to reproduce the complex flow phenomena, including the laminar separation bubble dynamics and aerodynamic performance, with a very good degree of accuracy. The sensitivity of the model to domain size, grid resolution and quality, timestepping scheme, and free‐stream turbulence intensity was also presented. In view of the results obtained, the proposed model is deemed appropriate for modelling low‐Reynolds‐number external aerodynamics and provides a framework for future studies for the better understanding of this complex flow regime. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Rhie–Chow interpolation is a commonly used method in CFD calculations on a co‐located mesh in order to suppress non‐physical pressure oscillations arising from chequerboard effects. A fully parallelized smoothed‐interface immersed boundary method on a co‐located grid is described in this paper. We discuss the necessity of modifications to the original Rhie–Chow interpolation in order to deal with a locally refined mesh. Numerical simulation with the modified scheme of Choi shows that numerical dissipation due to Rhie–Chow interpolation introduces significant errors at the immersed boundary. To address this issue, we develop an improved Rhie–Chow interpolation scheme that is shown to increase the accuracy in resolving the flow near the immersed boundary. We compare our improved scheme with the modified scheme of Choi by parallel simulations of benchmark flows: (i) flow past a stationary cylinder; (ii) flow past an oscillating cylinder; and (iii) flow past a stationary elliptical cylinder, where Reynolds numbers are tested in the range 10–200. Our improved scheme is significantly more accurate and compares favourably with a staggered grid algorithm. We also develop a scheme to compute the boundary force for the direct‐forcing immersed boundary method efficiently. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper deals with the calculation of free surface flow of viscous incompressible fluid around the hull of a boat moving with rectilinear motion. An original method used to avoid a large part of the theoretical problems connected with free surface boundary conditions in three‐dimensional Navier–Stokes–Reynolds equations is proposed here. The linearised system of convective equations for velocities, pressure and free surface elevation unknowns is discretised by finite differences and two methods to solve the fully coupled resulting matrix are presented here. The non‐linear convergence of fully coupled algorithm is compared with the velocity–pressure weakly coupled algorithm SIMPLER. Turbulence is taken into account through Reynolds decomposition and k–ε or k–ω model to close the equations. These two models are implemented without wall function and numerical calculations are performed up to the viscous sub‐layer. Numerical results and comparisons with experiments are presented on the Series 60 CB=0.60 ship model for a Reynolds number Rn=4.5×106 and a Froude number Fn=0.316. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
A new approach for the solution of the steady incompressible Navier–Stokes equations in a domain bounded in part by a free surface is presented. The procedure is based on the finite difference technique, with the non‐staggered grid fractional step method used to solve the flow equations written in terms of primitive variables. The physical domain is transformed to a rectangle by means of a numerical mapping technique. In order to design an effective free solution scheme, we distinguish between flows dominated by surface tension and those dominated by inertia and viscosity. When the surface tension effect is insignificant we used the kinematic condition to update the surface; whereas, in the opposite case, we used the normal stress condition to obtain the free surface boundary. Results obtained with the improved boundary conditions for a plane Newtonian jet are found to compare well with the available two‐dimensional numerical solutions for Reynolds numbers, up to Re=100, and Capillary numbers in the range of 0≤Ca<1000. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
The Godunov‐projection method is implemented on a system of overlapping structured grids for solving the time‐dependent incompressible Navier–Stokes equations. This projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The Godunov procedure is applied to estimate the non‐linear convective term in order to provide a robust discretization of this terms at high Reynolds number. In order to obtain the pressure field, a separate procedure is applied in this modified Godunov‐projection method, where the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain, as they offer the flexibility of simplifying the grid generation around complex geometrical domains. This combination of projection method and overlapping grid is also parallelized and reasonable parallel efficiency is achieved. Numerical results are presented to demonstrate the performance of this combination of the Godunov‐projection method and the overlapping grid. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号