首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a projection method is presented for solving the flow problems in domains with moving boundaries. In order to track the movement of the domain boundaries, arbitrary‐Lagrangian–Eulerian (ALE) co‐ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co‐ordinates are solved by using a projection method developed in this paper. This projection method is based on the Bell's Godunov‐projection method. However, substantial changes are made so that this algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi‐block structured grids are used to discretize the flow domains. The grid velocity is not explicitly computed; instead the volume change is used to account for the effect of grid movement. A new method is also proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL) can be satisfied exactly in this algorithm. This projection method is also parallelized so that the state of the art high performance computers can be used to match the computation cost associated with the moving grid calculations. Several test cases are solved to verify the performance of this moving‐grid projection method. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

3.
A fast cosine transform (FCT) is coupled with a tridiagonal solver for the purpose of solving the Poisson equation on irregular and non‐uniform rectangular staggered grids. This kind of solution is required for the pressure field during the simulation of the incompressible Navier–Stokes equations when using the projection method. A new technique using the FCT–tridiagonal solver is derived for the cases where the boundaries of the flow regime do not coincide with the boundaries of the computational domain and for non‐uniform grids. The technique is based on an iterative procedure where a defect equation is solved in every iteration, followed by a relaxation procedure. The method is investigated analytically and numerically to show that the solution converges as a geometric series. The method is further investigated for the effects of the relative size of the rigid body, the grid stretching, size and aspect ratio. The new solver is incorporated with the direct numerical simulation (DNS) and large eddy simulation (LES) techniques to simulate the flows around a backward‐facing step and a 3D rectangular obstacle, yielding results that qualitatively compare well with known results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
A methodology for improved robustness in the simulation of high void fraction free surface polydisperse bubbly flows in curvilinear overset grids is presented. The method is fully two‐way coupled in the sense that the bubbly field affects the continuous fluid and vice versa. A hybrid projection approach is used in which staggered contravariant velocities at cell faces are computed for transport and pressure–velocity coupling while the momentum equation is solved on a collocated grid arrangement. Conservation of mass is formulated such that a strong coupling between void fraction, pressure, and velocity is achieved within a partitioned approach, solving each field separately. A pressure–velocity projection solver is iterated together with a predictor stage for the void fraction to achieve a robust coupling. The implementation is described for general curvilinear grids detailing particulars in the neighborhood to overset interfaces or a free surface. A balanced forced method to avoid the generation of spurious currents is extended for curvilinear grids. The overall methodology allows simulation of high void fraction flows and is stable even when strong packing forces accounting for bubble collisions are included. Convergence and stability in one‐dimensional (1D) and two‐dimensional (2D) configurations is evaluated. Finally, a full‐scale simulation of the bubbly flow around a flat‐bottom boat is performed demonstrating the applicability of the methodology to complex problems of engineering interest. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
It is well known that exact projection methods (EPM) on non‐staggered grids suffer for the presence of non‐solenoidal spurious modes. Hence, a formulation for simulating time‐dependent incompressible flows while allowing the discrete continuity equation to be satisfied up to machine‐accuracy, by using a Finite Volume‐based second‐order accurate projection method on non‐staggered and non‐uniform 3D grids, is illustrated. The procedure exploits the Helmholtz–Hodge decomposition theorem for deriving an additional velocity field that enforces the discrete continuity without altering the vorticity field. This is accomplished by first solving an elliptic equation on a compact stencil that is by performing a standard approximate projection method (APM). In such a way, three sets of divergence‐free normal‐to‐face velocities can be computed. Then, a second elliptic equation for a scalar field is derived by prescribing that its additional discrete gradient ensures the continuity constraint based on the adopted linear interpolation of the velocity. Characteristics of the double projection method (DPM) are illustrated in details and stability and accuracy of the method are addressed. The resulting numerical scheme is then applied to laminar buoyancy‐driven flows and is proved to be stable and efficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
This paper deals with the use of the continuous adjoint equation for aerodynamic shape optimization of complex configurations with overset grids methods. While the use of overset grid eases the grid generation process, the non‐trivial task of ensuring communication between overlapping grids needs careful attention. This need is effectively addressed by using a practically useful technique known as the implicit hole cutting (IHC) method. The method depends on a simple cell selection process based on the criterion of cell size, and all grid points including interior points and fringe points are treated indiscriminately in the computation of the flow field. This paper demonstrates the simplicity of the IHC method for the adjoint equation. Similar to the flow solver, the adjoint equations are solved on conventional point‐matched and overlapped grids within a multi‐block framework. Parallel computing with message passing interface is also used to improve the overall efficiency of the optimization process. The method is successfully demonstrated in several two‐ and a three‐dimensional shape optimization cases for both external and internal flow problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper the explicit jump immersed interface method (EJIIM) is applied to stationary Stokes flows. The boundary value problem in a general, non‐grid aligned domain is reduced by the EJIIM to a sequence of problems in a rectangular domain, where staggered grid‐based finite differences for velocity and pressure variables are used. Each of these subproblems is solved by the fast Stokes solver, consisting of the pressure equation (known also as conjugate gradient Uzawa) method and a fast Fourier transform‐based Poisson solver. This results in an effective algorithm with second‐order convergence for the velocity and first order for the pressure. In contrast to the earlier versions of the EJIIM, the Dirichlét boundary value problem is solved very efficiently also in the case when the computational domain is not simply connected. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
This paper reports on the implementation and testing, within a full non‐linear multi‐grid environment, of a new pressure‐based algorithm for the prediction of multi‐fluid flow at all speeds. The algorithm is part of the mass conservation‐based algorithms (MCBA) group in which the pressure correction equation is derived from overall mass conservation. The performance of the new method is assessed by solving a series of two‐dimensional two‐fluid flow test problems varying from turbulent low Mach number to supersonic flows, and from very low to high fluid density ratios. Solutions are generated for several grid sizes using the single grid (SG), the prolongation grid (PG), and the full non‐linear multi‐grid (FMG) methods. The main outcomes of this study are: (i) a clear demonstration of the ability of the FMG method to tackle the added non‐linearity of multi‐fluid flows, which is manifested through the performance jump observed when using the non‐linear multi‐grid approach as compared to the SG and PG methods; (ii) the extension of the FMG method to predict turbulent multi‐fluid flows at all speeds. The convergence history plots and CPU‐times presented indicate that the FMG method is far more efficient than the PG method and accelerates the convergence rate over the SG method, for the problems solved and the grids used, by a factor reaching a value as high as 15. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A moment‐of‐fluid method is presented for computing solutions to incompressible multiphase flows in which the number of materials can be greater than two. In this work, the multimaterial moment‐of‐fluid interface representation technique is applied to simulating surface tension effects at points where three materials meet. The advection terms are solved using a directionally split cell integrated semi‐Lagrangian algorithm, and the projection method is used to evaluate the pressure gradient force term. The underlying computational grid is a dynamic block‐structured adaptive grid. The new method is applied to multiphase problems illustrating contact‐line dynamics, triple junctions, and encapsulation in order to demonstrate its capabilities. Examples are given in two‐dimensional, three‐dimensional axisymmetric (RZ), and three‐dimensional (XYZ) coordinate systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Second‐order accurate projection methods for simulating time‐dependent incompressible flows on cell‐centred grids substantially belong to the class either of exact or approximate projections. In the exact method, the continuity constraint can be satisfied to machine‐accuracy but the divergence and Laplacian operators show a four‐dimension nullspace therefore spurious oscillating solutions can be introduced. In the approximate method, the continuity constraint is relaxed, the continuity equation being satisfied up to the magnitude of the local truncation error, but the compact Laplacian operator has only the constant mode. An original formulation for allowing the discrete continuity equation to be satisfied to machine‐accuracy, while using a finite volume based projection method, is illustrated. The procedure exploits the Helmholtz–Hodge decomposition theorem for deriving an additional velocity field that enforces the discrete continuity without altering the vorticity field. This is accomplished by solving a second elliptic field for a scalar field obtained by prescribing that its additional discrete gradients ensure discrete continuity based on the previously adopted linear interpolation of the velocity. The resulting numerical scheme is applied to several flow problems and is proved to be accurate, stable and efficient. This paper has to be considered as the companion of: 'F. M. Denaro, A 3D second‐order accurate projection‐based finite volume code on non‐staggered, non‐uniform structured grids with continuity preserving properties: application to buoyancy‐driven flows. IJNMF 2006; 52 (4):393–432. Now, we illustrate the details and the rigorous theoretical framework. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
高阶紧致格式求解二维粘性不可压缩复杂流场   总被引:3,自引:0,他引:3  
修东滨  任安禄 《力学学报》1996,28(3):264-269
提出了一种求解二维不可压缩复杂流场的高精度算法.控制方程为原始变量、压力Poisson方程提法.在任意曲线坐标下,采用四阶紧致格式求解Navier-Stokes方程组,时间推进采用交替方向隐式(ADI)格式,在非交错网格上用松弛法求解压力Poisson方程.对于复杂的流场,采用了区域分解方法,并在每一时间步对各子域实施松弛迭代使之能精确地反映非定常流场.利用该算法计算了二维受驱空腔流动,弯管流动和垂直平板的突然起动问题.计算结果与实验结果和其他研究者的计算结果相比较吻合良好.对于平板起动流动,成功地模拟了流场中旋涡的生成以及Karman涡街的形成  相似文献   

12.
In this article, we present a higher‐order finite volume method with a ‘Modified Implicit Pressure Explicit Saturation’ (MIMPES) formulation to model the 2D incompressible and immiscible two‐phase flow of oil and water in heterogeneous and anisotropic porous media. We used a median‐dual vertex‐centered finite volume method with an edge‐based data structure to discretize both, the elliptic pressure and the hyperbolic saturation equations. In the classical IMPES approach, first, the pressure equation is solved implicitly from an initial saturation distribution; then, the velocity field is computed explicitly from the pressure field, and finally, the saturation equation is solved explicitly. This saturation field is then used to re‐compute the pressure field, and the process follows until the end of the simulation is reached. Because of the explicit solution of the saturation equation, severe time restrictions are imposed on the simulation. In order to circumvent this problem, an edge‐based implementation of the MIMPES method of Hurtado and co‐workers was developed. In the MIMPES approach, the pressure equation is solved, and the velocity field is computed less frequently than the saturation field, using the fact that, usually, the velocity field varies slowly throughout the simulation. The solution of the pressure equation is performed using a modification of Crumpton's two‐step approach, which was designed to handle material discontinuity properly. The saturation equation is solved explicitly using an edge‐based implementation of a modified second‐order monotonic upstream scheme for conservation laws type method. Some examples are presented in order to validate the proposed formulation. Our results match quite well with others found in literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
An adaptive quadtree grid generation algorithm is developed and applied for tracer and multiphase flow in channelized heterogeneous porous media. Adaptivity was guided using two different approaches. In the first approach, wavelet transformation was used to generate a refinement field based on permeability variations. The second approach uses flow information based on the solution of an initial-time fine-scale problem. The resulting grids were compared with uniform grid upscaling. For uniform upscaling, two commonly applied methods were used: renormalization upscaling and local-global upscaling. The velocities obtained by adaptive grid and uniformly upscaled grids, were downscaled. This procedure allows us to separate the upscaling errors, on adaptive and uniform grids, from the numerical dispersion errors resulting from solving the saturation equation on a coarse grid. The simulation results obtained by solving on flow-based adaptive quadtree grids for the case of a single phase flow show reasonable agreement with more computationally demanding fine-scale models and local-global upscaled models. For the multiphase case, the agreement is less evident, especially in piston-like displacement cases with sharp frontal movement. In such cases a non-iterative transmissibility upscaling procedure for adaptive grid is shown to significantly reduce the errors and make the adaptive grid comparable to iterative local-global upscaling. Furthermore, existence of barriers in a porous medium complicates both upscaling and grid adaptivity. This issue is addressed by adapting the grid using a combination of flow information and a permeability based heuristic criterion.  相似文献   

14.
A solution methodology has been developed for incompressible flow in general curvilinear co‐ordinates. Two staggered grids are used to discretize the physical domain. The first grid is a MAC quadrilateral mesh with pressure arranged at the centre and the Cartesian velocity components located at the middle of the sides of the mesh. The second grid is so displaced that its corners correspond to the centre of the first grid. In the second grid the pressure is placed at the corner of the first grid. The discretized mass and momentum conservation equations are derived on a control volume. The two pressure grid functions are coupled explicitly through the boundary conditions and implicitly through the velocity of the field. The introduction of these two grid functions avoids an averaging of pressure and velocity components when calculating terms that are generated in general curvilinear co‐ordinates. The SIMPLE calculation procedure is extended to the present curvilinear co‐ordinates with double grids. Application of the methodology is illustrated by calculation of well‐known external and internal problems: viscous flow over a circular cylinder, with Reynolds numbers ranging from 10 to 40, and lid‐driven flow in a cavity with inclined walls are examined. The numerical results are in close agreement with experimental results and other numerical data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
A new numerical method that couples the incompressible Navier–Stokes equations with the global mass correction level‐set method for simulating fluid problems with free surfaces and interfaces is presented in this paper. The finite volume method is used to discretize Navier–Stokes equations with the two‐step projection method on a staggered Cartesian grid. The free‐surface flow problem is solved on a fixed grid in which the free surface is captured by the zero level set. Mass conservation is improved significantly by applying a global mass correction scheme, in a novel combination with third‐order essentially non‐oscillatory schemes and a five stage Runge–Kutta method, to accomplish advection and re‐distancing of the level‐set function. The coupled solver is applied to simulate interface change and flow field in four benchmark test cases: (1) shear flow; (2) dam break; (3) travelling and reflection of solitary wave and (4) solitary wave over a submerged object. The computational results are in excellent agreement with theoretical predictions, experimental data and previous numerical simulations using a RANS‐VOF method. The simulations reveal some interesting free‐surface phenomena such as the free‐surface vortices, air entrapment and wave deformation over a submerged object. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, the CLEAR (coupled and linked equations algorithm revised) algorithm is extended to non‐orthogonal curvilinear collocated grids. The CLEAR algorithm does not introduce pressure correction in order to obtain an incompressible flow field which satisfies the mass conservation law. Rather, it improves the intermediate velocity by solving an improved pressure equation to make the algorithm fully implicit since there is no term omitted in the derivation process. In the extension of CLEAR algorithm from a staggered grid system in Cartesian coordinates to collocated grids in non‐orthogonal curvilinear coordinates, three important issues are appropriately treated so that the extended CLEAR can lead to a unique solution without oscillation of pressure field and with high robustness. These three issues are (1) solution independency on the under‐relaxation factor; (2) strong coupling between velocity and pressure; and (3) treatment of the cross pressure gradient terms. The flow and heat transfer problems in a rectangular enclosure with an internal eccentric circle and the flow in a lid‐driven inclined cavity are computed by using the extended CLEAR. The results show that the extended CLEAR can guarantee the solution independency on the under‐relaxation factor, the smoothness of pressure profile even at very small under‐relaxation factor and good robustness which leads to a converged solution for the small inclined angle of 5° only with 5‐point computational molecule while the extended SIMPLE‐series algorithm usually can get a converged solution for the inclined angle larger than 30° under the same condition. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we describe an implicit hybrid finite volume (FV)/element (FE) incompressible Navier–Stokes solver for turbulent flows based on the Spalart–Allmaras detached eddy simulation (SA‐DES). The hybrid FV/FE solver is based on the segregated pressure correction or projection method. The intermediate velocity field is first obtained by solving the original momentum equations with the matrix‐free implicit cell‐centered FV method. The pressure Poisson equation is solved by the node‐based Galerkin FE method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centers and the auxiliary variable at vertices, making the current solver a staggered‐mesh scheme. The SA‐DES turbulence equation is solved after the velocity and the pressure fields have been updated at the end of each time step. The same matrix‐free FV method as the one used for momentum equations is used to solve the turbulence equation. The turbulence equation provides the eddy viscosity, which is added to the molecular viscosity when solving the momentum equation. In our implementation, we focus on the accuracy, efficiency and robustness of the SA‐DES model in a hybrid flow solver. This paper will address important implementation issues for high‐Reynolds number flows where highly stretched elements are typically used. In addition, some aspects of implementing the SA‐DES model will be described to ensure the robustness of the turbulence model. Several numerical examples including a turbulent flow past a flat plate and a high‐Reynolds number flow around a high angle‐of‐attack NACA0015 airfoil will be presented to demonstrate the accuracy and efficiency of our current implementation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A time‐accurate algorithm is proposed for low‐Mach number, variable density flows on curvilinear grids. Spatial discretization is performed on collocated grid that offers computational simplicity in curvilinear coordinates. The flux interpolation technique is used to avoid the pressure odd–even decoupling of the collocated grid arrangement. To increase the stability of the method, a two‐step predictor–corrector time integration scheme is employed. At each step, the projection method is used to calculate the hydrodynamic pressure and to satisfy the continuity equation. The robustness and accuracy of the method is illustrated with a series of numerical experiments including thermally driven cavity, polar cavity, three‐dimensional cavity, and direct numerical simulation of non‐isothermal turbulent channel flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In large‐scale shallow flow simulations, local high‐resolution predictions are often required in order to reduce the computational cost without losing the accuracy of the solution. This is normally achieved by solving the governing equations on grids refined only to those areas of interest. Grids with varying resolution can be generated by different approaches, e.g. nesting methods, patching algorithms and adaptive unstructured or quadtree gridding techniques. This work presents a new structured but non‐uniform Cartesian grid system as an alternative to the existing approaches to provide local high‐resolution mesh. On generating a structured but non‐uniform Cartesian grid, the whole computational domain is first discretized using a coarse background grid. Local refinement is then achieved by directly allocating a specific subdivision level to each background grid cell. The neighbour information is specified by simple mathematical relationships and no explicit storage is needed. Hence, the structured property of the uniform grid is maintained. After employing some simple interpolation formulae, the governing shallow water equations are solved using a second‐order finite volume Godunov‐type scheme in a similar way as that on a uniform grid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In the paper, discontinuous Galerkin method is applied to simulation of incompressible free round turbulent jet using large eddy simulation with eddy viscosity approach. The solution algorithm is based on the classical projection method, but instead of the solution of the Poisson equation, a parabolic equation is advanced in pseudo‐time, which provides the pressure field ensuring the proper pressure–velocity coupling. For time and pseudo‐time integration, explicit Runge–Kutta method is employed. The computational meshes consist of hexahedral elements with flat faces. Within a given finite element, all flow variables are expressed with modal expansions of the same order (including velocity and pressure). Discretisation of the viscous terms in the Navier–Stokes equations and Laplacian in the Poisson equation is stabilised with mixed finite element approach. The correctness of the solution algorithm is verified in a commonly used test case of laminar flow in 3D lid‐driven cavity. The results of computations of the free jet are compared with experimental and numerical reference data, the latter obtained from the high‐order pseudospectral code. The statistics of centerline flow velocity – mean velocity and its fluctuations – show satisfactory agreement with the reference data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号