首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in straight ducts using the RNG (Re-Normalized Group) turbulence method.

A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts with different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with the RNG κ?ε model and the RNG non-linear κ-ε model of Speziale. The turbulent heat fluxes are modeled by the simple eddy diffusivity (SED) concept, GGDH and WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models arc implemented for an arbitrary three dimensional duct.

Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non-staggered grid arrangement. The pressure-velocity coupling is handled by using the SIMPLEC-algorithm. The convective terms are treated by the QUICK, scheme while the diffusive terms are handled by the central-difference scheme. The hybrid scheme is used for solving the κ and ε equations.

The overall comparison between the models is presented in terms of friction factor and Nusselt number. The secondary flow generation is also of major concern.  相似文献   

2.
The incompressible flow around bluff bodies (a square cylinder and a cube) is investigated numerically using turbulence models. A non‐linear kε model, which can take into account the anisotropy of turbulence with less CPU time and computer memory then RSM or LES, is adopted as a turbulence model. In tuning of the model coefficients of the non‐linear terms are adjusted through the examination of previous experimental studies in simple shear flows. For the tuning of the coefficient in the eddy viscosity (=Cμ), the realizability constraints are derived in three types of basic 2D flow patterns, namely, a simple shear flow, flow around a saddle and a focal point. Cμ is then determined as a function of the strain and rotation parameters to satisfy the realizability. The turbulence model is first applied to a 2D flow around a square cylinder and the model performance for unsteady flows is examined focussing on the period and the amplitude of the flow oscillation induced by Karman vortex shedding. The applicability of the model to 3D flows is examined through the computation of the flow around a surface‐mounted cubic obstacle. The numerical results show that the present model performs satisfactorily to reproduce complex turbulent flows around bluff bodies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Turbulent flow in a compound meandering open channel with seminatural cross sections is one of the most complicated turbulent flows as the flow pattern is influenced by the combined action of various forces, such as centrifugal force, pressure, and shear stresses. In this paper, a three‐dimensional (3D) Reynolds stress model (RSM) is adopted to simulate the compound meandering channel flows. Governing equations of the flow are solved numerically with finite‐volume method. The velocity fields, wall shear stresses, and Reynolds stresses are calculated for a range of input conditions. Good agreement between the simulated results and measurements indicates that RSM can successfully predict the complicated flow phenomenon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Using a priori analyses of direct numerical simulation (DNS) data, a Reynolds stress model (RSM) is developed to account for the influence of polymer additives on turbulent flow over a wide range of flow conditions. The Finitely Extensible Nonlinear Elastic-Peterlin (FENE-P) rheological constitutive model is utilized to evaluate the polymer contribution to the stress tensor. Thirteen DNS data sets are used to analyze the budgets of elastic stress–velocity gradient correlations as well as Reynolds stress and dissipation transport. Closures are developed in the framework of the RSM model for all the required unknown and non-linear terms. The polymer stresses, velocity profiles, turbulent flow statistics and the percentage of friction drag reduction predicted by the RSM model are in good agreement with present and those obtained from independent DNS data over a wide range of rheological and flow parameters.  相似文献   

5.
In this paper, water flow in a rib-roughened channel is investigated numerically by using Reynolds stress turbulence models (RSM) on a three-dimensional (3-D) domain. Computational results for mean streamwise velocity component and turbulent kinetic energy show good agreements with available experimental data. Five rib pitch-to-height ratios (p/h) of 1, 5, 10, 15 and 20 are analysed for six different Reynolds numbers (Re) of 3000, 7000, 12,000, 20,000, 40,000 and 65,000. Velocity vectors, streamlines and Reynolds stresses are showed for these ratios and Re numbers. Streamlines revealed that Reynolds numbers do not affect flowfield but play an important role in the Reynolds stresses.  相似文献   

6.
This paper presents two‐dimensional and unsteady RANS computations of time dependent, periodic, turbulent flow around a square block. Two turbulence models are used: the Launder–Sharma low‐Reynolds number k–ε model and a non‐linear extension sensitive to the anisotropy of turbulence. The Reynolds number based on the free stream velocity and obstacle side is Re=2.2×104. The present numerical results have been obtained using a finite volume code that solves the governing equations in a vertical plane, located at the lateral mid‐point of the channel. The pressure field is obtained with the SIMPLE algorithm. A bounded version of the third‐order QUICK scheme is used for the convective terms. Comparisons of the numerical results with the experimental data indicate that a preliminary steady solution of the governing equations using the linear k–ε does not lead to correct flow field predictions in the wake region downstream of the square cylinder. Consequently, the time derivatives of dependent variables are included in the transport equations and are discretized using the second‐order Crank–Nicolson scheme. The unsteady computations using the linear and non‐linear k–ε models significantly improve the velocity field predictions. However, the linear k–ε shows a number of predictive deficiencies, even in unsteady flow computations, especially in the prediction of the turbulence field. The introduction of a non‐linear k–ε model brings the two‐dimensional unsteady predictions of the time‐averaged velocity and turbulence fields and also the predicted values of the global parameters such as the Strouhal number and the drag coefficient to close agreement with the data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a finite difference technique for solving incompressible turbulent free surface fluid flow problems. The closure of the time‐averaged Navier–Stokes equations is achieved by using the two‐equation eddy‐viscosity model: the high‐Reynolds k–ε (standard) model, with a time scale proposed by Durbin; and a low‐Reynolds number form of the standard k–ε model, similar to that proposed by Yang and Shih. In order to achieve an accurate discretization of the non‐linear terms, a second/third‐order upwinding technique is adopted. The computational method is validated by applying it to the flat plate boundary layer problem and to impinging jet flows. The method is then applied to a turbulent planar jet flow beneath and parallel to a free surface. Computations show that the high‐Reynolds k–ε model yields favourable predictions both of the zero‐pressure‐gradient turbulent boundary layer on a flat plate and jet impingement flows. However, the results using the low‐Reynolds number form of the k–ε model are somewhat unsatisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
In the current study, numerical investigation of incompressible turbulent flow is presented. By the artificial compressibility method, momentum and continuity equations are coupled. Considering Reynolds averaged Navier–Stokes equations, the Spalart–Allmaras turbulence model, which has accurate results in two‐dimensional problems, is used to calculate Reynolds stresses. For convective fluxes a Roe‐like scheme is proposed for the steady Reynolds averaged Navier–Stokes equations. Also, Jameson averaging method was implemented. In comparison, the proposed characteristics‐based upwind incompressible turbulent Roe‐like scheme, demonstrated very accurate results, high stability, and fast convergence. The fifth‐order Runge–Kutta scheme is used for time discretization. The local time stepping and implicit residual smoothing were applied as the convergence acceleration techniques. Suitable boundary conditions have been implemented considering flow behavior. The problem has been studied at high Reynolds numbers for cross flow around the horizontal circular cylinder and NACA0012 hydrofoil. Results were compared with those of others and a good agreement has been observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Large‐eddy simulation (LES) and Reynolds‐averaged Navier–Stokes simulation (RANS) with different turbulence models (including the standard k?ε, the standard k?ω, the shear stress transport k?ω (SST k?ω), and Spalart–Allmaras (S–A) turbulence models) have been employed to compute the turbulent flow of a two‐dimensional turbulent boundary layer over an unswept bump. The predictions of the simulations were compared with available experimental measurements in the literature. The comparisons of the LES and the SST k?ω model including the mean flow and turbulence stresses are in satisfied agreements with the available measurements. Although the flow experiences a strong adverse pressure gradient along the rear surface, the boundary layer is unique in that intermittent detachment occurring near the wall. The numerical results indicate that the boundary layer is not followed by mean‐flow separation or incipient separation as shown from the numerical results. The resolved turbulent shear stress is in a reasonable agreement with the experimental data, though the computational result of LES shows that its peak is overpredicted near the trailing edge of the bump, while the other used turbulence models, except the standard k?ε, underpredicts it. Analysis of the numerical results from LES confirms the experimental data, in which the existence of internal layers over the bump surface upstream of the summit and along the downstream flat plate. It also demonstrates that the quasi‐step increase in skin friction is due to perturbations in pressure gradient. The surface curvature enhances the near‐wall shear production of turbulent stresses, and is responsible for the formation of the internal layers. The aim of the present work is to examine the response and prediction capability of LES with the dynamic eddy viscosity model as a sub‐grid scale to the complex turbulence structure with the presence of streamline curvature generated by a bumpy surface. Aiming to reduce the computational costs with focus on the mean behavior of the non‐equilibrium turbulent boundary layer of flow over the bump surface, the present investigation also explains the best capability of one of the used RANS turbulence models to capture the driving mechanism for the surprisingly rapid return to equilibrium over the trailing flat plate found in the measurements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Three‐dimensional (3D) numerical study is presented to investigate the turbulent flow in meandering compound open channels with trapezoidal cross‐sections. The flow simulation is carried out by solving the 3D Reynolds‐averaged continuity and Navier–Stokes equations with Reynolds stress equation model (RSM) for steady‐state flow. Finite volume method (FVM) is applied to numerically solve the governing equations of fluid flow. The velocity magnitude, tangential velocity, transverse velocity and Reynolds stresses are calculated for various flow conditions. Good agreement between the simulated and available laboratory measurements was obtained, indicating that the RSM can accurately predict the complicated flow phenomenon. Comparison of the calculated secondary currents of four cases (one being inbank flow and other three being overbank flow) with different water depths reveals that (i) the inbank flow exhibits different flow behaviors from that of the overbank flow does and (ii) the water depth has significant effects on the magnitude and direction of secondary currents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A numerical analysis has been performed for three‐dimensional developing turbulent flow in a 180° bend tube with straight inlet and outlet section used by an algebraic Reynolds stress model. To our knowledge, numerical investigations, which show the detailed comparison between calculated results and experimental data including distributions of Reynolds stresses, are few and far between. From this point of view, an algebraic Reynolds stress model in conjunction with boundary‐fitted co‐ordinate system is applied to a 180° bend tube in order to predict the anisotropic turbulent structure precisely. Calculated results are compared with the experimental data including distributions of Reynolds stresses. As a result of this analysis, it has been found that the calculated results show a comparatively good agreement with the experimental data of the time‐averaged velocity and the secondary vectors in both the bent tube and straight outlet sections. For example, the location of the maximum streamwise velocity, which appears near the top or bottom wall in the bent tube, is predicted correctly by the present method. As for the comparison of Reynolds stresses, the present method has been found to simulate many characteristic features of streamwise normal stress and shear stresses in the bent tube qualitatively and has a tendency to under‐predict its value quantitatively. Judging from the comparison between the calculated and the experimental results, the algebraic Reynolds stress model is applicable to the developing turbulent flow in a bent tube that is known as a flow with a strong convective effect. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Axisymmetrically stable turbulent Taylor vortices between two concentric cylinders are studied with respect to the transition from vortex to wall driven turbulent production. The outer cylinder is stationary and the inner cylinder rotates. A low Reynolds number turbulence model using the kω formulation, facilitates an analysis of the velocity gradients in the Taylor–Couette flow. For a fixed inner radius, three radius ratios 0.734, 0.941 and 0.985 are employed to identify the Reynolds number range at which this transition occurs. At relatively low Reynolds numbers, turbulent production is shown to be dominated by the outflowing boundary of the Taylor vortex. As the Reynolds number increases, shear driven turbulence (due to the rotating cylinder) becomes the dominating factor. For relatively small gaps turbulent flow is shown to occur at Taylor numbers lower than previously reported. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Smagorinsky‐based models are assessed in a turbulent channel flow simulation at Reb=2800 and Reb=12500. The Navier–Stokes equations are solved with three different grid resolutions by using a co‐located finite‐volume method. Computations are repeated with Smagorinsky‐based subgrid‐scale models. A traditional Smagorinsky model is implemented with a van Driest damping function. A dynamic model assumes a similarity of the subgrid and the subtest Reynolds stresses and an explicit filtering operation is required. A top‐hat test filter is implemented with a trapezoidal and a Simpson rule. At the low Reynolds number computation none of the tested models improves the results at any grid level compared to the calculations with no model. The effect of the subgrid‐scale model is reduced as the grid is refined. The numerical implementation of the test filter influences on the result. At the higher Reynolds number the subgrid‐scale models stabilize the computation. An analysis of an accurately resolved flow field reveals that the discretization error overwhelms the subgrid term at Reb=2800 in the most part of the computational domain. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
A low‐Reynolds number kε turbulence model is proposed that incorporates diffusion terms and modified Cε(1,2) coefficients to amplify the level of dissipation in non‐equilibrium flow regions, thus reducing the kinetic energy and length scale magnitudes to improve prediction of adverse pressure gradient flows, involving flow separation and reattachment. Unlike the conventional kε model, it requires no wall function/distance parameter that bridges the near‐wall integration. The model is validated against a few flow cases, yielding predictions in good agreement with the direct numerical simulation (DNS) and experimental data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The calculations of quasi‐three‐dimensional momentum equations were carried out to study the influence of wall rotation on the characteristics of an impinging jet. The pressure coefficient, the mean velocity distributions and the components of Reynolds stress are calculated. The flow is assumed to be steady, incompressible and turbulent. The finite volume scheme is used to solve the continuity equation, momentum equations and k–ε model equations. The flow characteristics were studied by varying rotation speed ω for 0?ω?167.6 rad/s, the distance from nozzle to disk (H/d) was (3, 5, 8 and 10) and the Reynolds number Re base on VJ and d was 1.45 × 104. The results showed that, the radial velocity and turbulence intensity increase by increasing the rotation speed and decrease in the impingement zone as nozzle to disk spacing increases. When the centrifugal force increases, the radial normal stresses and shear stresses increase. The location of maximum radial velocity decreases as the local velocity ratio (α) increases. The pressure coefficient depends on the centrifugal force and it decreases as the distance from nozzle to plate increases. In impingement zone and radial wall jet, the spread of flow increases as the angular velocity decreases The numerical results give good agreement with the experiment data of Minagawa and Obi (Int. J. of Heat and Fluid Flow 2004; 25 :759–766). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Effects of dilute polymer solutions on a lid-driven cubical cavity turbulent flow are studied via particle image velocimetry (PIV). This canonical flow is a combination of a bounded shear flow, driven at constant velocity and vortices that change their spatial distribution as a function of the lid velocity. From the two-dimensional PIV data we estimate the time averaged spatial fields of key turbulent quantities. We evaluate a component of the vorticity–velocity correlation, namely 〈ω3v〉, which shows much weaker correlation, along with the reduced correlation of the fluctuating velocity components, u and v. There are two contributions to the reduced turbulent kinetic energy production −〈u vSuv, namely the reduced Reynolds stresses, −〈u v〉, and strongly modified pointwise correlation of the Reynolds stress and the mean rate-of-strain field, Suv. The Reynolds stresses are shown to be affected because of the derivatives of the Reynolds stresses, u v〉/∂y that are strongly reduced in the same regions as the vorticity–velocity correlation. The results, combined with the existing evidence, support the phenomenological model of polymer effects propagating from the polymer scale to the velocity derivatives and through the mixed-type correlations and Reynolds stress derivatives up to the turbulent velocity fields. The effects are shown to be qualitatively similar in different flows regardless of forcing type, homogeneity or presence of liquid–solid boundaries.  相似文献   

17.
This paper discusses the importance of realistic implementation of the physical boundary conditions into computational domain for the simulation of the oscillatory turbulent boundary layer flow over smooth and rough flat beds. A mathematical model composed of the Reynolds averaged Navier–Stokes equation, turbulent kinetic energy (k) and dissipation rate of the turbulent kinetic energy (ε) has been developed. Control‐volume approach is used to discretize the governing equations to facilitate the numerical solution. Non‐slip condition is imposed on the bottom surface, and irrotational main flow properties are applied to the upper boundary. The turbulent kinetic energy is zero at the bottom, whereas the dissipation rate is approaching to a constant value, which is proportional to the kinematic viscosity times the second derivative of the turbulent kinetic energy. The output of the model is compared with the available experimental studies conducted in oscillatory tunnels and wave flume. It is observed that the irrotational flow assumption at the upper boundary is not realistic in case of water tunnels. Therefore, new upper boundary conditions are proposed for oscillatory tunnels. The data of wave flume show good agreement with the proposed numerical model. Additionally, several factors such as grid aspect ratio, staggered grid arrangement, time‐marching scheme and convergence criteria that are important to obtain a robust, realistic and stable code are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
An improved anisotropic model for the dissipation rate—ε—of the turbulent kinetic energy (k), to be used together with a non‐linear pressure‐strain correlations model, is proposed. Experimental data from the open literature for two confined turbulent swirling flows are used to assess the performance of the proposed model in comparison to the standard ε transport equation and to a linear approach to model the pressure‐strain term that appears in the exact equations for the Reynolds‐stress tensor. For the less strongly swirling flow the predictions show much more sensitivity to the εtransport equation than to the pressure‐strain model. In opposition, for the more strongly swirling flow, the results show that the predictions are much sensitive to the pressure‐strain model. Nevertheless, the improved εtransport equation together with the non‐linear pressure strain model yield predictions in good agreement with experiments in both studied cases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
20.
研究Birkhoff系统的一般Lie对称性导致的非Noether守恒量. 得到非Noether守恒 量的存在定理,举例说明结果的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号