首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
In this paper, we investigate the stability and bifurcation of a class of coupled nonlinear relative rotation system with multi-time delay feedbacks. Using dissipative system Lagrange equation, the dynamics equation of coupled nonlinear relative rotation system with three masses is established. The dynamical behaviors of the system under multi-time delay feedbacks, with two state variables, are discussed. First, characteristic roots and the stable regions of time delay are determined by direct method. The relation between two time delays ratio or time delay feedbacks gains and the stable regions of time delay is analyzed. Second, the direction and stability of Hopf bifurcation are decided by normal form theorem and center manifold argument. Finally, numerical simulation can confirm the validity of the conclusion.  相似文献   

2.
研究弹性支承滑动轴承不平衡转子系统的稳定性及分岔特性。建立了弹性支承-滑动轴承-转子非线性动力系统的力学模型,在油膜力非线性的情况下,应用数值模拟,采用打靶法计算了刚性转子系统的周期解,并与龙格-库塔法计算的结果进行了对比,依据Floquet理论,分析了周期解的稳定性,再结合龙格-库塔法、Poineare映射法作出了系统运动分岔图。最后,讨论了轴的柔性对转子系统运动稳定性的影响。  相似文献   

3.
The modal interaction which leads to Hamiltonian Hopf bifurcation is studied for a nonlinear rotating bladed-disk system. The model, which is discussed in the paper, is a Jeffcott rotor carrying a number of planar blades which bend in the plane of the motion. The rigid rotating disk is supported on nonlinear bearings. It is supposed that this dynamical system is a Hamiltonian system which is perturbed by small dissipative and nonlinear forces. Krein’s theorem is employed for obtaining a stability criterion. The nonlinear eigenvalue equations on the stability boundary are turned into ordinary differential equations (ODEs) by differentiating them over the rotating speed. By solving these ODEs, the eigenmodes and the eigenvalues on the stability boundary are obtained. The bifurcation analysis is performed by applying multiple scales method around the boundary. The rotor nonlinear behavior and damping effects are studied for different conditions on the rotating speed and nonlinearity type by the bifurcation equation. It is shown that the damping distribution between the blades and bearings may shift the unstable mode. Depending on the nonlinearity type, subcritical and supercritical Hopf bifurcation are possible.  相似文献   

4.
The main transmission system of a scraper conveyor direct-driven by the high-power permanent magnet synchronous motor (PMSM) is taken as a study object. With the effect of the nonlinear friction torque caused by the nonuniformity of the transported coal quality in the operation process considered, the torsional vibration bifurcation mechanism and the corresponding control measures for the main transmission system of the scraper conveyor are investigated. Firstly, based on the Lagrange–Maxwell principle, the global electromechanical-coupling dynamic models for the main transmission system of the scraper conveyor are constructed. Secondly, by the Routh–Hurwitz stability criterion, the Hopf bifurcation characteristics of the main transmission system are analyzed to reveal the influence of supercritical bifurcation and subcritical bifurcation on the torsional oscillation of the transmission shafting. Thirdly, in order to suppress the system unstable oscillation caused by the Hopf bifurcation, the motor speed is fed back to construct the nonlinear state feedback controller for the quadrature axis current of the PMSM by the \(I_{d}=0\) vector control strategy. Similarly, on the basis of the Routh–Hurwitz criterion, the influence of the linear feedback coefficient in the nonlinear state feedback controller on the system bifurcation position is discussed. Meanwhile, by the central manifold theory and canonical form theory, the effect of the square and cubic nonlinear feedback coefficients on the Hopf bifurcation type of the torsional vibration and the amplitude of the stable limit cycle are investigated. Finally, the numerical simulation results show the effectiveness of the designed controller.  相似文献   

5.
一类非线性磁流变系统局部分岔特性研究   总被引:5,自引:0,他引:5  
讨论了一类基于磁流变阻尼器非线性系统的局部分岔与控制问题,建立了该系统的动力 学模型,运用中心流形定理和范式理论,得到该系统双零特征值问题的规范形及其普适开折, 进而探讨了此系统的分岔行为和稳定性;给出了分岔曲线、转迁集;并给出了此类非线性系 统的数值仿真结果.  相似文献   

6.
Spatiotemporal structures arising in two identical cells,which are governed by higher autocatalator kinetics and coupled via diffusive interchange of autocatalyst, are discussed.The stability of the unique homogeneous steady state is obtained by the linearized theory.A necessary condition for bifurcations in spatially non-uniform solutions in uncoupled and coupled systems is given.Further information about Turing pattern solutions near bifurcation points is obtained by weakly nonlinear theory.Finally,the stability of equilibrium points of the amplitude equation is discussed by weakly nonlinear theory,with the bifurcation branches of the weakly coupled system.  相似文献   

7.
This paper introduces two novel fractional-order chaotic systems with cubic nonlinear resistor and investigates its adaptive sliding mode synchronization. Firstly the novel two equilibrium chaotic system with cubic nonlinear resistor (NCCNR) is derived and its dynamic properties are investigated. The fractional-order cubic nonlinear resistor system (FONCCNR) is then derived from the integer-order model and its stability and fractional-order bifurcation are discussed. Next a novel no-equilibrium chaotic cubic nonlinear resistor system (NECNR) is derived from NCCNR system. Dynamic properties of NECNR system are investigated. The fractional-order no equilibrium cubic nonlinear resistor system (FONECNR) is derived from NECNR. Stability and fractional-order bifurcation are investigated for the FONECNR system. The non-identical adaptive sliding mode synchronization of FONCCNR and FONECNR systems are achieved. Finally the proposed systems, adaptive control laws, sliding surfaces and adaptive controllers are implemented in FPGA.  相似文献   

8.
多维磁浮柔性转子控制系统分岔与控制器设计   总被引:1,自引:1,他引:0  
姚宏  徐健学 《力学学报》2001,33(1):121-127
讨论了多维悬浮柔性转子控制系统局部及全局分岔问题,首先建立了该复杂系统动力学模型,应用中心流形和求规范形综合方法,得到此系统非半简双零特征值问题的规范形及其普适开折,并进一步讨论了此控制系统的分岔 行为(余维二分岔)及稳定性;给出了为实现稳定控制,控制器参数、转子系统结构参数的相互关系及稳定控制域,即给出分岔 参数条件、分岔曲线、转迁集,最后,给出此柔性转子控制系统的数值仿真结果。  相似文献   

9.
Time-delay feedback control of container cranes is robustly stable and insensitive to initial conditions for most of the linearly stable region. To better understand this robustness and any limitations of the technique, we undertake a nonlinear analysis of the system. To this end, we develop a nonlinear model of the crane system by modeling the crane-hoist-payload assembly as a double pendulum. Then, we derive a linear approximation specific to this model. Finally, we derive a cubic model of the dynamics for nonlinear analysis. Using linear analysis, we determine the gain and time delay factors for stabilizing controllers. Also, we show that the controller undergoes a Hopf bifurcation at the linear stability boundary. Using the method of multiple scales on the cubic model, we determine the normal form of the Hopf bifurcation. We then show that for practical operating ranges, the controller undergoes a supercritical bifurcation that helps explain the robustness of the controller.  相似文献   

10.
碰摩裂纹转子轴承系统的周期运动稳定性及实验研究   总被引:1,自引:0,他引:1  
根据碰摩裂纹耦合故障转子轴承系统的非线性动力学方程,利用求解非线性非自治系统周期解的延拓打靶法,研究了系统周期运动的稳定性。研究发现,小偏心量下系统周期运动发生Hopf分岔,大偏心量下系统周期运动发生倍周期分岔,偏心量的加大使周期解的稳定性明显降低;系统碰摩间隙变小,碰摩影响了油膜涡动的形成,使失稳转速有所提高;裂纹深度的加大降低了系统周期运动的稳定性。本文的研究为转子轴承系统的安全稳定运行提供了理论参考。  相似文献   

11.
王平  张雄  王知人 《力学季刊》2016,37(3):493-501
本文根据大挠度板壳力学基础理论和电磁弹性力学理论,建立了载流圆板的非线性磁弹性随机振动力学模型,采用伽辽金变分法将其变换成非线性常微分动力学方程.通过拟不可积哈密顿系统的平均理论将该方程等价为一个一维伊藤随机微分方程.通过计算该方程的最大Lyapunov 指数判断该系统的局部随机稳定性,并进一步采用基于随机扩散过程的奇异边界理论判断该系统的全局稳定性.最后通过讨论该系统的稳态概率密度函数图的形状变化讨论了该动力系统的随机Hopf分岔的变化规律,并采用数值模拟对理论分析进行了验证.  相似文献   

12.
Analytical and numerical analyses of the nonlinear response of a three-degree-of-freedom nonlinear aeroelastic system are performed. Particularly, the effects of concentrated structural nonlinearities on the different motions are determined. The concentrated nonlinearities are introduced in the pitch, plunge, and flap springs by adding cubic stiffness in each of them. Quasi-steady approximation and the Duhamel formulation are used to model the aerodynamic loads. Using the quasi-steady approach, we derive the normal form of the Hopf bifurcation associated with the system??s instability. Using the nonlinear form, three configurations including supercritical and subcritical aeroelastic systems are defined and analyzed numerically. The characteristics of these different configurations in terms of stability and motions are evaluated. The usefulness of the two aerodynamic formulations in the prediction of the different motions beyond the bifurcation is discussed.  相似文献   

13.
A single degree-of-freedom nonlinear mechanical model of the stick–slip phenomenon is studied when the Stribeck-type friction force is emulated by means of a digitally controlled actuator. The relative velocity of the slipping contact surfaces is considered as bifurcation parameter. The original physical system presents subcritical Hopf bifurcation with a wide bistable parameter region where stick–slip and steady-state slipping are both stable locally. Hardware-in-the-loop experiments are performed with a physical oscillatory system subjected to the emulated Stribeck forces. The effect of sampling time is studied with respect to the stability and nonlinear behavior of this experimental system. The existence of subcritical Neimark–Sacker bifurcations are proven in the digital system, the stability and bifurcation characteristics of the continuous and the digital systems are compared, and the counter-intuitive stabilizing effect of sampling time is shown both analytically and experimentally. The conclusions draw the attention to the limitations of hardware-in-the-loop experiments when the corresponding systems are strongly nonlinear.  相似文献   

14.
对挤压油膜阻尼器-滑动轴承-转子系统的稳定性及分岔行为进行了研究,由于该动力系统为一强非线性系统,具有复杂的非线性现象。本文采用Floquet理论对其周期解的稳定性进行了计算分析:随着系统参数的变化,该系统将出现稳态周期解、准周期分岔、倍周期分岔。文中也对系统平衡点的稳定性进行了分析,讨论了其Hopf分岔行为  相似文献   

15.
应用数值模拟方法研究磁场中旋转运动圆板的分叉与混沌问题。首先,基于薄板理论和麦克斯韦电磁场方程组,给出了动能、应变势能、外力虚功以及电磁力的表达式,再利用哈密顿原理,得到磁场中旋转运动圆板横向振动的非轴对称非线性磁弹性振动微分方程组。其次,采用贝塞尔函数作为圆板的振型函数进行伽辽金积分,得到了轴对称情况下横向振动的常微分方程组表达式。最后,针对主共振,取周边夹支边界条件的圆板作为算例,得到了当振型函数取一阶时,将磁感应强度、外激励振幅和激励频率作为控制参数的分叉图及庞加莱映射图等计算结果,并讨论了分叉参数对系统的分叉与混沌的影响。数值计算结果表明,这些控制参数的变化影响系统稳定性,在分叉参数逐渐变化的过程中,系统经历从混沌到多倍周期运动再到混沌的往复过程。  相似文献   

16.
Nonlinear dynamic behaviors of a rotor-labyrinth seal system   总被引:2,自引:0,他引:2  
The nonlinear model of rotor-labyrinth seal system is established using Muszynska’s nonlinear seal forces. We deal with dynamic behaviors of the unbalanced rotor-seal system with sliding bearing based on the adopted model and Newmark integration method. The influence of the labyrinth seal one the nonlinear characteristics of the rotor system is analyzed by the bifurcation diagrams and Poincare’ maps. Various phenomena in the rotor-seal system, such as periodic motion, double-periodic motion, quasi-periodic motion and Hopf bifurcation are investigated and the stability is judged by Floquet theory and bifurcation theorem. The influence of parameters on the critical instability speed of the rotor-seal system is also included.  相似文献   

17.
随机ARNOLD系统的稳定性与分叉   总被引:1,自引:1,他引:1  
本文详细讨论了当n=2时Arnold系统在小强度的随机参数激励扰动下,系统的运动稳定性及分叉。为了研究系统响应的统计特性,本文使用了Markov近似技巧。在线性系统的情形,给出了系统矩稳定及样本稳定的充分必要条件。在非线性情形,本文的结果表明随机扰动可使系统的分叉点发生漂移  相似文献   

18.
Hopf bifurcation control in nonlinear stochastic dynamical system with nonlinear random feedback method is studied in this paper. Firstly, orthogonal polynomial approximation is applied to reduce the controlled stochastic nonlinear dynamical system with nonlinear random controller to the deterministic equivalent system, solvable by suitable numerical methods. Then, Hopf bifurcation control with nonlinear random feedback controller is discussed in detail. Numerical simulations show that the method provided in this paper is not only available to control the stochastic Hopf bifurcation in nonlinear stochastic dynamical system, but is also superior to the deterministic nonlinear feedback controller.  相似文献   

19.
We consider the problem of determining the stability boundary of an elastic rod supported by Cardan joints at both ends. The rod is loaded by a compressive force and a couple. The constitutive equations of the rod take into account the compressibility of the rod axis. The stability boundary is determined by the bifurcation points of a system of eight nonlinear first order differential equations obtained by using suitable dependent variables. The type of bifurcation is examined depending on the compressibility. By numerical integration of a system of ten nonlinear first order differential equations the post-critical shape of the rod is determined.  相似文献   

20.
为了探究轮对系统的横向失稳问题,考虑了陀螺效应和一系悬挂阻尼的影响作用,建立非线性轮轨接触关系的轮对动力学模型,研究轮对系统的蛇行稳定性、Hopf分岔特性及迁移转化机理.通过稳定性判据获得了轮对系统失稳临界速度.采用中心流形定理和规范型方法对轮对动力学模型进行化简,得到与轮对系统分岔特性相同的一维复变量方程,理论推导求得轮对系统的第一Lyapunov系数的表达式,根据其符号即可判断轮对系统的Hopf分岔类型.讨论了不同参数对轮对系统Hopf分岔临界速度的影响,探究了轮对系统的超临界、亚临界Hopf分岔域在二维参数空间的分布规律.利用数值模拟得到轮对系统的3种典型Hopf分岔图,验证了轮对系统超临界、亚临界Hopf分岔域分布规律的正确性.结果表明,轮对系统的临界速度随着等效锥度的增大而减小,随着一系悬挂的纵向刚度和纵向阻尼的增大而增大,随着纵向蠕滑系数的增大呈先增大后减小.系统参数变化会引起轮对系统Hopf分岔类型发生改变,即亚临界与超临界Hopf分岔相互迁移转化.轮对系统Hopf分岔域在二维参数空间的分布规律对于轮对系统参数匹配和优化设计具有一定的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号