首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 800 毫秒
1.
A constant moving crack in a magnetoelectroelastic material under in-plane mechanical, electric and magnetic loading is studied for impermeable crack surface boundary conditions. Fourier transform is employed to reduce the mixed boundary value problem of the crack to dual integral equations, which are solved exactly. Steady-state asymptotic fields near the crack tip are obtained in closed form and the corresponding field intensity factors are expressed explicitly. The crack speed influences the singular field distribution around the crack tip and the effects of electric and magnetic loading on the crack tip fields are discussed. The crack kinking phenomena is investigated using the maximum hoop stress intensity factor criterion. The magnitude of the maximum hoop stress intensity factor tends to increase as the crack speed increases.  相似文献   

2.
Fracture of piezoelectromagnetic materials   总被引:12,自引:0,他引:12  
The crack problem in a medium possessing coupled piezoelectric, piezomagnetic and magnetoelectric effects is considered. A conservative integral is derived based on the governing equations for magnetoelectroelastic media. Closed-form solution is obtained for an anti-plane crack in an infinite medium. The conservative integral is used to obtain the path-independent integral near the crack tip. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of a crack tip are derived. It is found that the path-independent integral around the crack tip equals the energy release rate. In the absence of applied mechanical loads, the energy release rate is always negative.  相似文献   

3.
Analytical solutions for an anti-plane Griffith moving crack inside an infinite magnetoelectroelastic medium under the conditions of permeable crack faces are formulated using integral transform method. The far-field anti-plane mechanical shear and in-plane electrical and magnetic loadings are applied to the magnetoelectroelastic material. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Field intensity factors for magnetoelectroelastic material are obtained. The stresses, electric displacements and magnetic inductions at the crack tip show inverse square root singularities. The moving speed of the crack have influence on the dynamic electric displacement intensity factor (DEDIF) and the dynamic magnetic induction intensity factor (DMIIF), while the dynamic stress intensity factor (DSIF) does not depend on the velocity of the moving crack. When the crack is moving at very lower or very higher speeds, the crack will propagate along its original plane; while in the range of Mc1 < M < Mc2, the propagation of the crack possibly brings about the branch phenomena in magnetoelectroelastic media.  相似文献   

4.
Extending the polarization saturation model [Gao et al., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491-510] and the dielectric breakdown (DB) model [Zhang et al., 2005. The strip dielectric breakdown model. Int. J. Fract. 132, 311-327] in piezoelectric materials, the Strip Electric-Magnetic Breakdown (SEMB) model is proposed for electrically and magnetically impermeable crack in a magnetoelectroelastic medium to study the effect of the nonlinear character of electric field and magnetic field on fracture of magnetoelectroelastic materials. In the SEMB model, the electric field in the strip of the electric breakdown zone ahead of the crack tip is equal to the electric breakdown strength, while the magnetic filed in the strip of the magnetic breakdown zone is equal to the magnetic breakdown strength. By using the extended Stroh formalism and the extended dislocation modeling of a crack, the Griffith crack problem under the electrically and magnetically elastic-plastic condition in a magnetoelectroelastic medium is reduced to a set of dual integral equations. The sizes of the electric breakdown zone and the magnetic breakdown zone, the extended intensity factors and the local J-integral are obtained. The effect of the combined mechanical-electric-magnetic loadings on the local J-integral is studied.  相似文献   

5.
Dynamic anti-plane fracture problem of an exponentially graded linear magnetoelectroelastic plane with a finite impermeable crack subjected to time-harmonic SH-waves is solved. Directions of wave propagation and material inhomogeneity are chosen in an arbitrary way. The fundamental solution for the coupled system of partial differential equations with variable coefficients is derived in a closed form by the hybrid usage of both an appropriate algebraic transformation for the displacement vector and the Radon transform. The formulated boundary-value problem is solved by a nonhypersingular traction boundary integral equation method (BIEM). The collocation method and parabolic approximation for the unknown generalized crack opening displacements are used for the numerical solution of the posed problem. Quarter point elements placed next to the crack-tips ensure properly modeling the singular behavior of the field variables around the crack tip. Fracture parameters as stress intensity factor, electric field intensity factor and magnetic field intensity factor are computed. Intensive simulations reveal the sensitivity of the generalized intensity factors (GIF) at the crack-tips to the material inhomogeneity, characteristics of the incident wave, coupling effects, wave-material and wave-crack interaction phenomena.  相似文献   

6.
This paper considers the magneto-electro-mechanical coupling between an inclusion and matrix, which are both of magnetoelectroelastic materials. The general cases including the mode I, mode II and mode III are studied. Analytical solutions for an elliptical cylinder inclusion inside an infinite magnetoelectroelastic medium under combined mechanical–electrical–magnetic loadings are formulated via the Stroh formalism. Crack problem is also investigated and the stress, electric and magnetic fields in the vicinity of the crack tip are determined by a complex vector of intensity factors. Various special cases, including an impermeable inclusion, a permeable crack, a rigid and permeable inclusion, a rigid and permeable line inclusion, a permeable cavity, and an impermeable cavity are discussed.  相似文献   

7.
The anti-plane problem of multiple cracks originating from a circular hole in a magnetoelectroelastic solid is investigated under remotely uniform anti-plane mechanical loading and in-plane electromagnetic loadings. The boundary value problem is reduced to a Cauchy integral equation by a new mapping function and the complex variable method, which is further solved exactly. The analytic expressions of the complex potentials, the field intensity factors and the energy release rate are derived in closed-form under the assumption that the surfaces of the cracks and hole are both electrically and magnetically impermeable. The effects of crack configurations and combined loadings on the energy release rate are shown graphically. Several useful results which may have potential applications to the design and fracture analysis of magnetoelectroelastic structures are given.  相似文献   

8.
A penny-shaped interfacial crack between dissimilar magnetoelectroelastic layers subjected to magnetoelectromechanical loads is investigated,where the magnetoelectrically impermeable crack surface condition is adopted. By using Hankel transform technique,the mixed boundary value problem is firstly reduced to a system of singular integral equations,which are further reduced to a system of algebraic equations. The field intensity factors and energy release rate are finally derived. Numerical results elucidate the eects of crack configuration,electric and/or magnetic loads,and material parameters of the magnetoelectroelastic layers on crack propagation and growth. This work should be useful for the design of magnetoelectroelastic composite structures.  相似文献   

9.
The paper presents a fracture analysis for an electromagnetically dielectric crack in a functionally graded magnetoelectroelastic strip. It is considered that the material properties are varying exponentially along the width direction. Under the assumption of the in-plane magneto-electro-mechanical loadings, the dielectric crack is simulated by using the semi-permeable crack-face boundary conditions. The Fourier transform technique is applied to solve the boundary-value problem and four coupling singular integral equations are determined. A nonlinear system of algebraic equations is further derived and solved numerically to determine the electromagnetic field inside the crack. Then the field intensity factors of stress, electric displacement, and magnetic induction are given. Through the numerical computations, the effects of the material non-homogeneity and the permeability of crack interior on the electric displacement and the magnetic induction at the crack faces are studied. The variations of the intensity factors of stress, electric displacement, and magnetic induction versus the geometry of the crack, the strip width, and the material non-homogeneity are presented in graphics respectively.  相似文献   

10.
The transient analysis of a magnetoelectroelastic medium containing a crack is made under antiplane mechanical and inplane electric and magnetic impacts. The crack is assumed to penetrate through the solid along the poling direction. By using the Fourier and Laplace transforms, the associated mixed boundary value problem is reduced to a Fredholm integral equation of the second kind, which is solved numerically. By means of a numerical inversion of the Laplace transform, dynamic field intensity factors are obtained in the time domain. Numerical results are presented graphically to show the effects of the material properties and applied electric and magnetic impacts on the dynamic intensity factors of COD and stress, and dynamic energy density factors. The results indicate that except for the intensity factors of electric displacement and magnetic induction, other field intensity factors exhibit apparent transient feature. Moreover, they depend strongly on mechanical input as well as electric and magnetic impacts.  相似文献   

11.
A mode III crack cutting perpendicularly across the interface between two dissimilar semi-infinite magnetoelectroelastic solid is studied under the combined loads of a line force, a line electric charge and a line magnetic charge at an arbitrary location. The impermeable conditions are implied on the crack faces. The technique developed in literature for the elastic bimaterial with a crack cutting interface is exploited to treat the magnetoelectroelastic bimaterial. The Riemann-Hilbert problem can be formulated and solved based on complex variable method. Analytical solutions can be obtained for the entire plane. The intensity factors around crack tips can be defined for the elastic, electric and magnetic fields. It shows that, no matter where the load position is, the electric displacement intensity factors (EDIFs), as well as the magnetic induction intensity factors (MIIFs), are identical in magnitude but opposite in sign for both crack tips, on condition that a line force is solely applied. Alternatively, if only a line electric charge is considered, then the stress intensity factors (SIFs) and the MIIFs exhibit the behavior. Likewise, if only a line magnetic charge is applied, it turns to the SIFs and the EDIFs instead. In addition, the dependence of the intensity factors is graphically shown with respect to the location of a line force. It is found that the SIF for a crack tip tends to be infinite if the applied force is approaching the tip itself, but the EDIF, with the complete opposite trend, tends to be vanishing. Finally, focusing on the more practical case of piezoelectric/piezomagnetic bimaterial, variation of the SIF along with the moduli as well as the piezo constitutive coefficients is explored. These analyses may provide some guidance for material selection by minimizing the SIF. It is also believed that the results obtained in this paper can serve as the Green’s function for the dissimilar magnetoelectroelastic semi-infinite bimaterial with a crack cutting the interface under general magnetoelectromechanical loads.  相似文献   

12.
Magnetoelectroelastic analysis of a cracked piezoelectromagnetic solid is made within the framework of the theory of linear magnetoelectroelasticity. The associated mixed boundary-value problem is solved by the Fourier integral transform. For general electromagnetic crack-face boundary conditions, a full magnetoelectroelastic field in the entire plane induced by a crack is obtained explicitly, and field intensity factors and energy release rate are given. The influences of applied electric and magnetic loadings on the energy release rate, the strain intensity factor, and the stress distribution are presented graphically.  相似文献   

13.
T-stress as an important parameter characterizing the stress field around a cracked tip has attracted much attention. This paper concerns the T-stress near a cracked tip in a magnetoelectroelastic solid. By applying the Fourier transform, we solve the associated mixed boundary-value problem. Adopting crack-faces electromagnetic boundary conditions nonlinearly dependent on the crack opening displacement, coupled dual integral equations are derived. Then, the closed-form solution for the T-stress is obtained. A comparison of the T stresses for a cracked magnetoelectroelastic solid and for a cracked purely elastic material is made. Obtained results reveal that in addition to applied mechanical loading, the T-stress is dependent on electric and magnetic loadings for a vacuum crack.  相似文献   

14.
The interaction of a generalized screw dislocation with circular arc interfacial cracks under remote antiplane shear stresses, in-plane electric and magnetic loads in transversely isotropic magnetoelectroelastic solids is dealt with. By using the complex variable method, the general solutions to the problem are presented. The closed-form expressions of complex potentials in both the inhomogeneity and the matrix are derived for a single circular-arc interfacial crack. The intensity factors of stress, electric displacement and magnetic induction are provided explicitly. The image forces acting on the dislocation are also calculated by using the generalized Peach–Koehler formula. For the case of piezoelectric matrix and piezomagnetic inclusion, the shielding and anti-shielding effect of the dislocation upon the stress intensity factors is evaluated in detail. The results indicate that if the distance between the dislocation and the crack tip remains constant, the dislocation in the interface will have a largest shielding effect which retards the crack propagation. In addition, the influence of the interfacial crack geometry and materials magnetoelectroelastic mismatch upon the image force is discussed. Numerical computations show that the perturbation effect of the above parameters upon the image force is significant. The main result shows that a stable or unstable equilibrium point may be found when a screw dislocation approaches the surface of the crack from infinity which differs from the perfect bonded case under the same conditions. The present solutions contain a number of previously known results which can be shown to be special cases.  相似文献   

15.
This paper focuses on the study of the influence of a mixed-mode crack on the coupled response of a functionally graded magnetoelectroelastic material (FGMEEM). The crack is embedded at the center of a 2D infinite medium subjected to magnetoelectromechanical loads. The material is graded in the direction orthogonal to the crack plane and is modeled as a nonhomogeneous medium with anisotropic constitutive laws. Using Fourier transform, the resulting plane magnetoelectroelasticity equations are converted analytically into singular integral equations which are solved numerically to yield the crack-tip mode I and II stress intensity factors, the electric displacement intensity factors and the magnetic induction intensity factors. The main objective of this paper is to study the influence of material nonhomogeneity on the fields’ intensity factors for the purpose of gaining better understanding on the behavior of graded magnetoelectroelastic materials.  相似文献   

16.
This paper analyzes the dynamic magnetoelectroelastic behavior induced by a penny-shaped crack in a magnetoelectroelastic layer subjected to prescribed stress or prescribed displacement at the layer surfaces. Two kinds of crack surface conditions, i.e., magnetoelectrically impermeable and permeable cracks, are adopted. The Laplace and Hankel transform techniques are employed to reduce the problem to Fredholm integral equations. Field intensity factors are obtained and discussed. Numerical results of the crack opening displacement (COD) intensity factors are presented and the effects of magnetoelectromechanical loadings, crack surface conditions and crack configuration on crack propagation and growth are examined. The results indicate that among others, the fracture behaviors of magnetoelectroelastic materials are affected by the sizes and directions of the prescribed magnetic and/or electric fields, and the effects are strongly dependent on the elastic boundary conditions.  相似文献   

17.
Thermomagnetoelectroelastic crack branching of magnetoelectro thermoelastic materials is theoretically investigated based on Stroh formalism and continuous distribution of dislocation approach. The crack face boundary condition is assumed to be fully thermally, electrically and magnetically impermeable. Explicit Green’s functions for the interaction of a crack and a thermomagnetoelectroelastic dislocation (i.e., a thermal dislocation, a mechanical dislocation, an electric dipole and a magnetic dipole located at a same point) are presented. The problem is reduced to two sets of coupled singular integral equations with the thermal dislocation and magnetoelectroelastic dislocation densities along the branched crack line as the unknown variables. As a result, the formulations for the stress, electric displacement and magnetic induction intensity factors and energy release rate at the branched crack tip are expressed in terms of the dislocation density functions and the branch angle. Numerical results are presented to study the effect of applied thermal flux, electric field and magnetic field on the crack propagation path by using the maximum energy release rate criterion.  相似文献   

18.
The dynamic response of an interfacial crack between two dissimilar magnetoelectroelastic layers is investigated under magnetic, electrical and mechanical impact loadings. Four kinds of ideal crack-face assumptions, i.e., magnetoelectrically impermeable (Case 1), magnetically impermeable and electrically permeable (Case 2), magnetically permeable and electrically impermeable (Case 3) and magnetoelectrically permeable (Case 4), are adopted separately. The dynamic field intensity factors and energy release rates are derived. The effects of loading combinations and crack configurations especially for the former on the dynamic response are examined according to energy release rate criterion. The numerical results show that, among others, a negative magnetic (or electrical) loading is generally prone to inhibit the crack extension rather than a positive one for a magnetically (or electrically) impermeable interfacial crack. Results presented in this paper should have potential applications to the design of multilayered magnetoelectroelastic structures.  相似文献   

19.
The dislocation simulation method is used in this paper to derive the basic equations for a crack perpendicular to the bimaterial interface in a finite solid. The complete solutions to the problem, including the T stress and the stress intensity factors are obtained. The stress field characteristics are investigated in detail. It is found that when the crack is within a weaker material, the stress intensity factor is smaller than that in a homogeneous material and it decreases when the distance between the crack tip and interface decreases. When the crack is within a stiffer material, the stress intensity factor is larger than that in a homogeneous material and it increases when the distance between the crack tip and interface decreases. In both cases, the stress intensity factor will increase when the ratio of the size of a sample to the crack length decreases. A comparison of stress intensity factors between a finite problem and an infinite problem has been given also. The stress distribution ahead of the crack tip, which is near the interface, is shown in details and the T stress effect is considered.  相似文献   

20.
The hyper-singular boundary integral equation method of crack analysis in three-dimensional transversely isotropic magnetoelectroelastic media is proposed. Based on the fundamental solutions or Green’s functions of three-dimensional transversely isotropic magnetoelectroelastic media and the corresponding Somigliana identity, the boundary integral equations for a planar crack of arbitrary shape in the plane of isotropy are obtained in terms of the extended displacement discontinuities across crack faces. The extended displacement discontinuities include the displacement discontinuities, the electric potential discontinuity and the magnetic potential discontinuity, and correspondingly the extended tractions on crack face represent the conventional tractions, the electric displacement and the magnetic induction boundary values. The near crack tip fields and the intensity factors in terms of the extended displacement discontinuities are derived by boundary integral equation approach. A solution method is proposed by use of the analogy between the boundary integral equations of the magnetoelectroelastic media and the purely elastic materials. The influence of different electric and magnetic boundary conditions, i.e., electrically and magnetically impermeable and permeable conditions, electrically impermeable and magnetically permeable condition, and electrically permeable and magnetically impermeable condition, on the solutions is studied. The crack opening model is proposed to consider the real crack opening and the electric and magnetic fields in the crack cavity under combined mechanical-electric-magnetic loadings. An iteration approach is presented for the solution of the non-linear model. The exact solution is obtained for the case of uniformly applied loadings on the crack faces. Numerical results for a square crack under different electric and magnetic boundary conditions are displayed to demonstrate the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号