首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to simulate non-uniform coating delamination, the elasto-static problem of a penny shaped axisymmetric crack embedded in a functionally graded coating bonded to a homogeneous substrate subjected to crack surface tractions is considered. The coating’s material gradient is parallel to the axisymmetric direction and is orthogonal to the crack plane. The graded coating is modeled as a non-homogeneous medium with an isotropic constitutive law. Using Hankel transform, the governing equations are converted into coupled singular integral equations, which are solved numerically to yield the crack tip stress intensity factors. The Finite Element Method was additionally used to model the crack problem. The main objective of this paper is to study the influence of the material non-homogeneity and the crack position on the stress intensity factors for the purpose of gaining better understanding on the behavior of graded coatings.  相似文献   

2.
This paper deals with the antiplane magnetoelectroelastic problem of an internal crack normal to the edge of a functionally graded piezoelectric/piezomagnetic half plane. The properties of the material such as elastic modulus, piezoelectric constant, dielectric constant, piezomagnetic coefficient, magnetoelectric coefficient and magnetic permeability are assumed in exponential forms and vary along the crack direction. Fourier transforms are used to reduce the impermeable and permeable crack problems to a system of singular integral equations, which is solved numerically by using the Gauss-Chebyshev integration technique. The stress, electric displacement and magnetic induction intensity factors at the crack tips are determined numerically. The energy density theory is applied to study the effects of nonhomogeneous material parameter β, edge conditions, location of the crack and load ratios on the fracture behavior of the internal crack.  相似文献   

3.
In this paper, we consider the elasto-static problem of an embedded crack in a graded orthotropic coating bonded to a homogeneous substrate subject to statically applied normal and tangential surface loading. The crack direction is parallel to the free surface. The coating is graded in the thickness direction and is orthogonal to the crack direction. This coating is modelled as a non-homogeneous medium with an orthotropic stress–strain law. The equivalent crack surface stresses are first obtained and substituted in the plane elasticity equations. Using integral transforms, the governing equations are converted into singular integral equations which are solved numerically to yield the displacement field as well as the crack-tip stress intensity factors. This study presents a complete theoretical formulation for the problem in the static case. A numerical predictive capability for solving the singular integral equations and computing the crack-tip stress intensity factors is proposed. Since the loading is compressive, a previously developed crack-closure algorithm is applied to avoid interpenetration of the crack faces. The main objective of the paper is to investigate the effects of the material orthotropy and non-homogeneity of the graded coating on the crack-tip stress intensity factors, with and without using the crack-closure algorithm, for the purpose of gaining better understanding on the behavior and design of graded coatings.  相似文献   

4.
The paper presents a fracture analysis for an electromagnetically dielectric crack in a functionally graded magnetoelectroelastic strip. It is considered that the material properties are varying exponentially along the width direction. Under the assumption of the in-plane magneto-electro-mechanical loadings, the dielectric crack is simulated by using the semi-permeable crack-face boundary conditions. The Fourier transform technique is applied to solve the boundary-value problem and four coupling singular integral equations are determined. A nonlinear system of algebraic equations is further derived and solved numerically to determine the electromagnetic field inside the crack. Then the field intensity factors of stress, electric displacement, and magnetic induction are given. Through the numerical computations, the effects of the material non-homogeneity and the permeability of crack interior on the electric displacement and the magnetic induction at the crack faces are studied. The variations of the intensity factors of stress, electric displacement, and magnetic induction versus the geometry of the crack, the strip width, and the material non-homogeneity are presented in graphics respectively.  相似文献   

5.
Dynamic anti-plane fracture problem of an exponentially graded linear magnetoelectroelastic plane with a finite impermeable crack subjected to time-harmonic SH-waves is solved. Directions of wave propagation and material inhomogeneity are chosen in an arbitrary way. The fundamental solution for the coupled system of partial differential equations with variable coefficients is derived in a closed form by the hybrid usage of both an appropriate algebraic transformation for the displacement vector and the Radon transform. The formulated boundary-value problem is solved by a nonhypersingular traction boundary integral equation method (BIEM). The collocation method and parabolic approximation for the unknown generalized crack opening displacements are used for the numerical solution of the posed problem. Quarter point elements placed next to the crack-tips ensure properly modeling the singular behavior of the field variables around the crack tip. Fracture parameters as stress intensity factor, electric field intensity factor and magnetic field intensity factor are computed. Intensive simulations reveal the sensitivity of the generalized intensity factors (GIF) at the crack-tips to the material inhomogeneity, characteristics of the incident wave, coupling effects, wave-material and wave-crack interaction phenomena.  相似文献   

6.
This paper considers the magnetoelectroelastic problem of a crack in a medium possessing coupled piezoelectric, piezomagnetic and magnetoelectric effects. Based on the extended Stroh formalism, the general two-dimensional solutions to the magnetoelectroelastic problem are obtained, involving five analytic functions of different variables. The magnetoelectroelastic field around the crack tip is given. It contains five modes of square root singularities. Expressions of the stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived and the field intensity factors are provided. The path-independent conservative integral is derived. The energy release rate is written in terms of those field intensity factors. The explicit algebraic results are given for a special case of an anti-plane crack in a magnetoelectroelastic medium.  相似文献   

7.
Analytical solutions for an anti-plane Griffith moving crack inside an infinite magnetoelectroelastic medium under the conditions of permeable crack faces are formulated using integral transform method. The far-field anti-plane mechanical shear and in-plane electrical and magnetic loadings are applied to the magnetoelectroelastic material. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Field intensity factors for magnetoelectroelastic material are obtained. The stresses, electric displacements and magnetic inductions at the crack tip show inverse square root singularities. The moving speed of the crack have influence on the dynamic electric displacement intensity factor (DEDIF) and the dynamic magnetic induction intensity factor (DMIIF), while the dynamic stress intensity factor (DSIF) does not depend on the velocity of the moving crack. When the crack is moving at very lower or very higher speeds, the crack will propagate along its original plane; while in the range of Mc1 < M < Mc2, the propagation of the crack possibly brings about the branch phenomena in magnetoelectroelastic media.  相似文献   

8.
This paper has twofold aims. One is to study the dynamic response of a magnetoelectroelastic half-space with functionally graded coating containing crack at the interface when subjected to sudden impacts. Two different loading positions, where the material and crack surfaces are loaded respectively, are considered. By using the integral transform method, the problem is reduced to solving singular integral equations. Obtained numerical results show that the overshoots of dynamic fracture parameters are strongly amplified or reduced depending on negative or positive gradient, respectively for the case of the material surface being loaded suddenly. This implies that a functionally graded coating with a positive gradient index is preferable in engineering design due to its capability of preventing the structure from cracking. The second objective is to give a comparison of relevant dynamic parameters such as the intensity factors of stress and strain, energy release rate, and energy density factor, and their features are elucidated under dynamic combined loadings. It indicates that the strain intensity factor can overcome the drawbacks of the rest parameters, and may be chosen as an effective fracture parameter, while three others cannot be adopted as fracture criteria to describe the feature of onset of crack growth.  相似文献   

9.
The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This problem is formulated into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. In order to obtain the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. The results show that the stress, the electric displacement, and the magnetic flux intensity factors of cracks depend on the crack length, the functionally graded parameter, and the distance among the multiple parallel cracks. The crack shielding effect is also obviously presented in a functionally graded piezoelectric/piezomagnetic material plane with mul- tiple parallel symmetric mode-III cracks.  相似文献   

10.
To simulate buckling of nonuniform coatings, we consider the problem of an embedded crack in a graded orthotropic coating bonded to a homogeneous substrate subjected to a compressive loading. The coating is graded in the thickness direction and the material gradient is orthogonal to the crack direction which is parallel with the free surface. The elastic properties of the material are assumed to vary continuously along the thickness direction. The principal directions of orthotropy are parallel and perpendicular to the crack orientation. The loading consists of a uniform compressive strain applied away from the crack region. The graded coating is modeled as a nonhomogeneous medium with an orthotropic stress–strain law. Using a nonlinear continuum theory and a suitable perturbation technique, the plane strain problem is reduced to an eigenvalue problem describing the onset of buckling. Using integral transforms, the resulting plane elasticity equations are converted analytically into singular integral equations which are solved numerically to yield the critical buckling strain. The Finite Element Method was additionally used to model the crack problem. The main objective of the paper is to study the influence of material nonhomogeneity on the buckling resistance of the graded layer for various crack positions, coating thicknesses and different orthotropic FGMs.  相似文献   

11.
This paper studies the mode III electro-elastic field of a cracked functionally graded piezoelectric strip bonded to a functionally graded piezoelectric half plane. The crack is oriented in arbitrary direction. The material properties along x-axis vary in exponential form. By using the Fourier transform, the problem can be formulated into a system of singular integral equations and solved by applying the Gauss–Chebyshev integration formula. The effects come from the edge, crack orientation and the nonhomogeneous material parameters on intensity factors are discussed graphically.  相似文献   

12.
功能梯度材料涂层平面裂纹分析   总被引:3,自引:1,他引:3  
程站起  仲政 《力学学报》2007,39(5):685-691
研究粘接于均质基底材料上功能梯度涂层平面裂纹问题. 假设功能梯度材料剪切模量的倒数为坐标的线性函数,而泊松比为常数. 采用Fourier变换和传递矩阵法将该混合边值问题化为奇异积分方程组,通过数值求解获得 应力强度因子. 考察了材料梯度变化形式、结构几何尺寸和材料梯度参数对裂纹应力强度因子的影响,发现 功能梯度材料涂层尺寸、裂纹长度以及材料梯度参数均对应力强度因子有显著影响.  相似文献   

13.
This paper analyzes the dynamic magnetoelectroelastic behavior induced by a penny-shaped crack in a magnetoelectroelastic layer subjected to prescribed stress or prescribed displacement at the layer surfaces. Two kinds of crack surface conditions, i.e., magnetoelectrically impermeable and permeable cracks, are adopted. The Laplace and Hankel transform techniques are employed to reduce the problem to Fredholm integral equations. Field intensity factors are obtained and discussed. Numerical results of the crack opening displacement (COD) intensity factors are presented and the effects of magnetoelectromechanical loadings, crack surface conditions and crack configuration on crack propagation and growth are examined. The results indicate that among others, the fracture behaviors of magnetoelectroelastic materials are affected by the sizes and directions of the prescribed magnetic and/or electric fields, and the effects are strongly dependent on the elastic boundary conditions.  相似文献   

14.
This paper presents a numerical model for the analysis of cracked magnetoelectroelastic materials subjected to in-plane mechanical, electric and magnetic dynamic time-harmonic loading. A traction boundary integral equation formulation is applied to solve the problem in combination with recently obtained time-harmonic Green’s functions (Rojas-Diaz et al., 2008). The hypersingular boundary integral equations appearing in the formulation are first regularized via a simple change of variables that permits to isolate the singularities. Relevant fracture parameters, namely stress intensity factors, electric displacement intensity factor and magnetic induction intensity factor are directly evaluated as functions of the computed nodal opening displacements and the electric and magnetic potentials jumps across the crack faces. The method is checked by comparing numerical results against existing solutions for piezoelectric solids. Finally, numerical results for scattering of plane waves in a magnetoelectroelastic material by different crack configurations are presented for the first time. The obtained results are analyzed to evaluate the dependence of the fracture parameters on the coupled magnetoelectromechanical load, the crack geometry and the characteristics of the incident wave motion.  相似文献   

15.
The hyper-singular boundary integral equation method of crack analysis in three-dimensional transversely isotropic magnetoelectroelastic media is proposed. Based on the fundamental solutions or Green’s functions of three-dimensional transversely isotropic magnetoelectroelastic media and the corresponding Somigliana identity, the boundary integral equations for a planar crack of arbitrary shape in the plane of isotropy are obtained in terms of the extended displacement discontinuities across crack faces. The extended displacement discontinuities include the displacement discontinuities, the electric potential discontinuity and the magnetic potential discontinuity, and correspondingly the extended tractions on crack face represent the conventional tractions, the electric displacement and the magnetic induction boundary values. The near crack tip fields and the intensity factors in terms of the extended displacement discontinuities are derived by boundary integral equation approach. A solution method is proposed by use of the analogy between the boundary integral equations of the magnetoelectroelastic media and the purely elastic materials. The influence of different electric and magnetic boundary conditions, i.e., electrically and magnetically impermeable and permeable conditions, electrically impermeable and magnetically permeable condition, and electrically permeable and magnetically impermeable condition, on the solutions is studied. The crack opening model is proposed to consider the real crack opening and the electric and magnetic fields in the crack cavity under combined mechanical-electric-magnetic loadings. An iteration approach is presented for the solution of the non-linear model. The exact solution is obtained for the case of uniformly applied loadings on the crack faces. Numerical results for a square crack under different electric and magnetic boundary conditions are displayed to demonstrate the proposed method.  相似文献   

16.
This paper studies the Mode III electric-elastic field of a cracked functionally graded piezoelectric strip bonded to a homogeneous piezoelectric half plane. The crack is oriented in arbitrary direction. The material properties of the strip vary along the strip thickness in exponential forms. By using the Fourier transform, the problem can be formulated to a system of singular integral equations and solved by applying the Gauss-Chebyshev integration formula. The effects come from the edge, crack orientations and the nonhomogeneous material parameter on intensity factors are discussed graphically.  相似文献   

17.
A mode III crack cutting perpendicularly across the interface between two dissimilar semi-infinite magnetoelectroelastic solid is studied under the combined loads of a line force, a line electric charge and a line magnetic charge at an arbitrary location. The impermeable conditions are implied on the crack faces. The technique developed in literature for the elastic bimaterial with a crack cutting interface is exploited to treat the magnetoelectroelastic bimaterial. The Riemann-Hilbert problem can be formulated and solved based on complex variable method. Analytical solutions can be obtained for the entire plane. The intensity factors around crack tips can be defined for the elastic, electric and magnetic fields. It shows that, no matter where the load position is, the electric displacement intensity factors (EDIFs), as well as the magnetic induction intensity factors (MIIFs), are identical in magnitude but opposite in sign for both crack tips, on condition that a line force is solely applied. Alternatively, if only a line electric charge is considered, then the stress intensity factors (SIFs) and the MIIFs exhibit the behavior. Likewise, if only a line magnetic charge is applied, it turns to the SIFs and the EDIFs instead. In addition, the dependence of the intensity factors is graphically shown with respect to the location of a line force. It is found that the SIF for a crack tip tends to be infinite if the applied force is approaching the tip itself, but the EDIF, with the complete opposite trend, tends to be vanishing. Finally, focusing on the more practical case of piezoelectric/piezomagnetic bimaterial, variation of the SIF along with the moduli as well as the piezo constitutive coefficients is explored. These analyses may provide some guidance for material selection by minimizing the SIF. It is also believed that the results obtained in this paper can serve as the Green’s function for the dissimilar magnetoelectroelastic semi-infinite bimaterial with a crack cutting the interface under general magnetoelectromechanical loads.  相似文献   

18.
A constant moving crack in a magnetoelectroelastic material under in-plane mechanical, electric and magnetic loading is studied for impermeable crack surface boundary conditions. Fourier transform is employed to reduce the mixed boundary value problem of the crack to dual integral equations, which are solved exactly. Steady-state asymptotic fields near the crack tip are obtained in closed form and the corresponding field intensity factors are expressed explicitly. The crack speed influences the singular field distribution around the crack tip and the effects of electric and magnetic loading on the crack tip fields are discussed. The crack kinking phenomena is investigated using the maximum hoop stress intensity factor criterion. The magnitude of the maximum hoop stress intensity factor tends to increase as the crack speed increases.  相似文献   

19.
This paper considers the mode III crack problem in functionally graded piezoelectric materials. The mechanical and the electrical properties of the medium are considered for a class of functional forms for which the equilibrium equations have an analytical solution. The problem is solved by means of singular integral equation technique. Both a single crack and a series of collinear cracks are investigated. The results are plotted to show the effect of the material inhomogeneity on the stress and the electric displacement intensity factors.  相似文献   

20.
The static equilibrium of a transversely isotropic magnetoelectroelastic body with a plane crack of arbitrary shape in the isotropy plane under antisymmetric mechanical loading is studied. The relationships between the stress intensity factors (SIFs) for an infinite magnetoelectroelastic body and the SIFs for a purely elastic body with the same crack and under the same antisymmetric loading are established. This enables the SIFs for a magnetoelectroelastic body to be found directly from the analogous problem of elasticity. As an example of using this result, the SIFs for penny-shaped, elliptic, and parabolic cracks in a magnetoelectroelastic body under antisymmetric mechanical loading are found Translated from Prikladnaya Mekhanika, Vol. 44, No. 10, pp. 37–51, October 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号