首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 995 毫秒
1.
基于面积坐标与B网方法的四边形样条单元   总被引:1,自引:0,他引:1  
传统等参元方法中, S型等参元完备阶较低,对网格畸变敏感, L型等参元具有高阶完备性但需要使用内部节点. 另外,由于引入等参变换, 采用数值积分可能导致总刚度矩阵出现奇异性.利用三角形面积坐标与B网方法建立了一类平面四边形的样条单元函数,它们的特点是满足协调条件, 克服网格畸变敏感性.其中8节点和12节点单元分别为2次和3次样条函数,对直角坐标分别具有二阶和三阶完备性, 高于相同节点的S型等参元.通过算例测试了这些样条单元, 并与等参元和其它四边形单元比较,数值结果显示了它们的高精度和有效性.   相似文献   

2.
A method which uses only the velocity components as primitive variables is described for solution of the incompressible unsteady Navier–Stokes equations. The method involves the multiplication of the primitive variable-based Navier–Stokes equations with the unit normal vector of finite volume elements and the integration of the resulting equations along the boundaries of four-node quadrilateral finite volume elements. Therefore, the pressure term is eliminated from the governing equations and any difficulty associated with pressure or vorticity boundary conditions is avoided. The equations are discretized on four-node quadrilateral finite volume elements by using the second-order-accurate central finite differences with the mid-point integral rule in space and the first-order-accurate backward finite differences in time. The resulting system of algebraic equations is solved in coupled form using a direct solver. As a test case, an impulsively accelerated lid-driven cavity flow in a square enclosure is solved in order to verify the accuracy of the present method.  相似文献   

3.
Formulation and numerical evaluation of a novel four-node quadrilateral element with continuous nodal stress(Q4-CNS)are presented.Q4-CNS can be regarded as an improved hybrid FE-meshless four-node quadrilateral element(FE-LSPIM QUAD4), which is a hybrid FE-meshless method.Derivatives of Q4-CNS are continuous at nodes, so the continuous nodal stress can be obtained without any smoothing operation.It is found that,compared with the standard four-node quadrilateral element(QUAD4),Q4- CNS can achieve significantly better accuracy and higher convergence rate.It is also found that Q4-CNS exhibits high tolerance to mesh distortion.Moreover,since derivatives of Q4-CNS shape functions are continuous at nodes,Q4-CNS is potentially useful for the problem of bending plate and shell models.  相似文献   

4.
前沿推进曲面四边形网格生成算法   总被引:1,自引:0,他引:1  
将一类前沿推进三角形曲面网格生成算法拓展到曲面四边形网格生成。新算法逐个单元推进前沿,避免了铺路法(Paving)逐排推进方式的鲁棒性问题,针对四边形算法在理想点计算、候选点列表构建和新单元生成等环节存在的特殊技术问题给出了系统的解决方案。数值实验表明,本文算法能针对复杂的组合参数曲面自动生成全四边形网格,网格质量优于...  相似文献   

5.
Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions have some properties of simplicity and conformality. Two 8-node quadrilateral elements have been developed using the triangular area coordinates and the B-net method, which can exactly model the quadratic field for both convex and concave quadrangles. Some appropriate examples are employed to evaluate the performance of the proposed elements. The numerical results show that the two spline elements can obtain solutions which are highly accurate and insensitive to mesh distortions.  相似文献   

6.
多边形有限元研究进展   总被引:10,自引:0,他引:10  
王兆清 《力学进展》2006,36(3):344-353
有限元法是数值求解偏微分方程边值问题的重要方法,采用不规则多边形单元网格, 可以方便有效地模拟材料的力学性能, 又使得区域网格剖分变得灵活方便. 特别是对于复杂的几何形状, 多边形单元网格具有更大的优势. 本文对国内外有关多边形有限元法的最新进展作了初步的总结和评述, 主要以基于位移法的多边形有限元为主.论述了多边形有限元的发展历史, 给出了多边形单元上的Wachspress插值、Laplace插值和重心坐标的一些最新研究成果. 与经典有限元法形函数为多项式形式不同, 多边形单元的形函数为有理函数或者无理函数形式. 多边形单元插值形函数满足线性完备性, 可以再现线性位移场, 像经典有限元法一样直接施加本质边界条件; 插值函数在多边形的边界上是线性的,确保不同单元间的自动协调. 不同单元的插值形函数表达公式形式统一, 方便混合单元网格计算的程序编写. 提出了多边形有限元法今后需要研究的问题.   相似文献   

7.
Isopaxametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and conformality. A 17onode quadrilateral element has been developed using the bivaxiate quaxtic spline interpolation basis and the triangular area coordinates, which can exactly model the quartic displacement fields. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.  相似文献   

8.
复杂裂纹问题的多边形数值流形方法求解   总被引:1,自引:0,他引:1  
数值流形方法是一种能统一处理连续和不连续问题的有效数值方法。该方法采用的数学覆盖系统可完全独立于物理域,能很好地求解各类裂纹问题,而n边形单元(n>4)则具有网格划分灵活,求解精度高等优点。本文基于数值流形方法,采用正六边形数学单元求解线弹性复杂裂纹问题。在导出相关方程的基础上对典型裂纹问题进行了分析,通过互能积分法得到了裂尖的应力强度因子,计算结果与参考解吻合得较好。除此之外,文中还对不同单元上的求解精度进行了比较,结果表明采用正六边形单元的求解精度较正四边形单元和正三角形单元上的精度均更高。  相似文献   

9.
提出一种适用于汽车覆盖件曲面有限元网格转化和在单元水平上提高模拟精度的方法,将平面下通过合并三角形单元成四边形单元的有限元网格转换方法的应用范围扩展到曲面,并且降低了对初始网格形状的要求。算法的关键在于增加了对曲面相邻单元不同夹角情况下的处理和优化规则,以使其能够更好地拟合原始CAD曲面。  相似文献   

10.
In this paper, a method (PFMC) for solving plane problem of linear creep is presented by using perturbation finite element. It can be used in plane problem in consideration of creep, such as reinforced concrete beam, presiressed concrete beam, reinforced concrete cylinder and reinforced concrete tunnel in elastic or visco-elastic medium, as well as underground building and so on.In the presented method, the assumption made in the general increment method that variables remain constant in a divided time interval is not taken. The accuracy is improved and the length of time step becomes larger. The computer storage can be reduced and the calculating efficiency can be increased.Perturbation finite element formulae for four-node quadrilateral isoparametric element including reinforcement are established and five numerical examples are given. As contrasted with the analytical solution, the accuracy is satisfactory.  相似文献   

11.
三维边界元分析中,高阶几何单元上的几乎奇异积分计算是一个重要而且困难的问题,该文对此进行了研究。使用8节点四边形和6节点三角形曲面单元来描述几何边界;构造了新的距离函数;拓展原有的指数函数非线性变换到三维边界元法中,利用拓展的变换来消除被积函数的几乎奇异性。数值算例表明,该算法稳定,效率高,即使计算点到实际边界的距离很小,依然可获得令人满意的数值解。  相似文献   

12.
基于四叉树法的有限元网格自动生成及凝聚方法   总被引:1,自引:0,他引:1  
本文介绍了用于有限元网格自动划分的四叉树方法及相应的非均匀网格的生成方法──网格凝聚法。此方法可以用于处理任意形状的单连通或多连通的平面结构,其边界以折线及二次曲线描述。相应的网格生成器用户界面友好,极少需要人工干预。所生成的单元大多为四边形元,在边界处理时用了少量三角元,所有单元性态良好。非均匀网格可以实现多处、多重加密。  相似文献   

13.
基于重叠划分的自由网格四边形单元计算方法   总被引:1,自引:0,他引:1  
提出了一种基于重叠划分的自由网格四边形单元计算方法。这一方法将四边形单元引入到自由网格计算方法中,不仅提高了计算的精度,同时还保留了自由网格计算方法的特点。方法首先对分析域内自动生成的每一个节点建立一套临时三角形单元,利用这些临时三角形单元组合生成四边形单元,以节点为单位进行计算。由于各矩阵的计算与组集均以节点为中心进行处理,因而特别适合于并行计算环境。在详细介绍自由网格四边形单元计算方法的基础上,利用数值算例证实了这一方法改善计算精度方面的有效性。  相似文献   

14.
In this paper, new planar isoparametric triangular finite elements (FE) based on the absolute nodal coordinate formulation (ANCF) are developed. The proposed ANCF elements have six coordinates per node: two position coordinates that define the absolute position vector of the node and four gradient coordinates that define vectors tangent to coordinate lines (parameters) at the same node. To shed light on the importance of the element geometry and to facilitate the development of some of the new elements presented in this paper, two different parametric definitions of the gradient vectors are used. The first parametrization, called area parameterization, is based on coordinate lines along the sides of the element in the reference configuration, while the second parameterization, called Cartesian parameterization, employs coordinate lines defined along the axes of the structure (body) coordinate system. The fundamental differences between the ANCF parameterizations used in this investigation and the parametrizations used for conventional finite elements are highlighted. The Cartesian parameterization serves as a unique standard for the triangular FE assembly. To this end, a transformation matrix that defines the relationship between the area and the Cartesian parameterizations is introduced for each element in order to allow for the use of standard FE assembly procedure and define the structure (body) inertia and elastic forces. Using Bezier geometry and a linear mapping, cubic displacement fields of the new ANCF triangular elements are systematically developed. Specifically, two new ANCF triangular finite elements are developed in this investigation, namely four-node mixed-coordinate and three-node ANCF triangles. The performance of the proposed new ANCF elements is evaluated by comparison with the conventional linear and quadratic triangular elements as well as previously developed ANCF rectangular and triangular elements. The results obtained in this investigation show that in the case of small and large deformations as well as finite rotations, all the elements considered can produce correct results, which are in a good agreement if appropriate mesh sizes are used.  相似文献   

15.
The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previous work, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the Bnet method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian coordinates. In this paper, a thin plate spline element is developed based on the spline element L8 and the refined technique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.  相似文献   

16.
A finite element model is developed based on the penalty formulation to study incompressible laminar flows. The study includes a number of new quadrilateral and triangular elements for 2-dimensional flows and a number of new hexahedral and tetrahedral elements for 3-dimensional flows. All elements employ continuous velocity approximations and discontinuous pressure approximations respecting the LBB condition of numerical instability. An incremental Newton–Raphson method coupled with the Broyden method is used to solve the non-linear equations. Several numerical examples (colliding flow, cavity flow, etc.) are presented to assess the efficiency of elements.  相似文献   

17.
This paper presents an improved exponential transformation for nearly singular boundary element integrals in elasticity problems. The new transformation is less sensitive to the position of the projection point compared with the original transformation. In our work, the conventional distance function is modified into a new form in the polar coordinate system. Based on the refined distance function, an improved exponential transformation is proposed in the polar coordinate system. Moreover, to perform integrations on irregular elements, an adaptive integration scheme considering both the element shape and the projection point associated with the improved transformation is proposed. Furthermore, when the projection point is located outside the integration element, another nearest point is introduced to subdivide the integration elements into triangular or quadrilateral patches of fine shapes. Numerical examples are presented to verify the proposed method. Results demonstrate the accuracy and efficiency of our method.  相似文献   

18.
弹性断裂分析的Williams广义参数单元计算模型中忽略了紧邻裂尖的微区域,为了进一步完善该计算模型,本文提出并建立了三角形Williams单元。首先围绕裂尖将奇异区均匀分割为有限个三角形单元,利用改进的Williams级数建立该单元的整体位移场计算模型;其次沿径向将该三角形单元进一步离散为多个相似四边形微单元和裂尖三角形微单元,并利用经典有限元理论建立微单元的局部位移场计算模型;然后利用整体位移场控制各微单元结点位移,并在此基础上研究建立裂尖奇异区三角形Williams单元及其控制方程。该单元模型中含有与裂尖应力强度因子相关的参数,能够直接计算裂尖处的应力强度因子。最后结合算例详细分析了三角形Williams单元计算模型中径向离散因子、离散数、Williams级数项对计算结果的影响。算例分析表明,三角形Williams单元所得的应力强度因子具有对奇异区尺寸不敏感的优点,且收敛快,计算精度高。  相似文献   

19.
The objective of this paper is to evaluate a number of shell elements. At the same time, a new element is presented that is inspired by the quadrilateral heterosis element, Q8H, and is designated herein as the triangular heterosis element, T6H. Both elements employ the selectively reduced integration method. The elements investigated in this study include ABAQUS’s three general-purpose shell elements, ANSYS’s six-noded triangular element, T6, and the high-performance MITC9 element available in ADINA. The assessment is carried out by subjecting the various elements to several benchmark problems. It is found that for regular meshes, Q8H out-performs other elements and is comparable to MITC9. The performance of T6H is shown to be comparable to that of T6 in most test cases, but superior when very thin shells are considered.  相似文献   

20.
A comparative study of the bi‐linear and bi‐quadratic quadrilateral elements and the quadratic triangular element for solving incompressible viscous flows is presented. These elements make use of the stabilized finite element formulation of the Galerkin/least‐squares method to simulate the flows, with the pressure and velocity fields interpolated with equal orders. The tangent matrices are explicitly derived and the Newton–Raphson algorithm is employed to solve the resulting nonlinear equations. The numerical solutions of the classical lid‐driven cavity flow problem are obtained for Reynolds numbers between 1000 and 20 000 and the accuracy and converging rate of the different elements are compared. The influence on the numerical solution of the least square of incompressible condition is also studied. The numerical example shows that the quadratic triangular element exhibits a better compromise between accuracy and converging rate than the other two elements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号