首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IntroductionThestudyoftheapproximatesolutionofstronglynonlinearsystemsisstillthemaintaskinthenonlineardynamicalregion .TherearematuremethodsincludingthedevelopedKBMmethod[1],themodifiedLPmethod[2 ]andthestroboscopicmethod[3]etal.However,whenthesemethodsarea…  相似文献   

2.
牛江川  张婉洁  申永军  王军 《力学学报》2022,54(4):1092-1101
利用增量平均法研究了复合干摩擦阻尼器的准零刚度非线性隔振系统在外部简谐激励作用下的1/3次亚谐共振. 首先利用平均法得到了复合干摩擦的准零刚度隔振系统的主共振近似解析解, 然后在系统主共振近似解析解的基础上将系统的亚谐共振响应看作增量, 并利用平均法得到了准零刚度隔振系统的亚谐共振近似解析解. 利用李雅普诺夫方法得到了准零刚度隔振系统主共振和亚谐共振稳态解的稳定性条件, 并推导了系统1/3次亚谐共振的存在条件. 根据近似解析解分别得到了复合干摩擦的准零刚度隔振系统的主共振和亚谐共振力传递率. 利用数值解验证了准零刚度隔振系统主共振和亚谐共振近似解析解的准确性. 利用系统的近似解析解详细分析了准零刚度参数和干摩擦力对系统主共振和亚谐共振的幅频响应以及力传递特性的影响. 分析结果表明, 通过选取合适的干摩擦力参数, 可以消除准零刚度隔振系统在主共振区域的亚谐共振. 通过复合干摩擦阻尼器不但可以提高准零刚度隔振系统在低频区域的振幅抑制效果, 而且可以降低准零刚度隔振系统的起始隔振频率, 但是会增大系统在有效隔振频带内的力传递率.   相似文献   

3.
The 1:2 subharmonic resonance of the labyrinth seals-rotor system is investigated, where the low-frequency vibration of steam turbines can be caused by the gas exciting force. The empirical parameters of gas exciting force of the Muszynska model are obtained by using the results of computational fluid dynamics (CFD). Based on the multiple scale method, the 1:2 subharmonic resonance response of the dynamic system is gained by truncating the system with three orders. The transition sets and the local bifurcations diagrams of the dynamics system are presented by employing the singular theory analysis. Meanwhile, the existence conditions of subharmonic resonance non-zero solutions of the dynamic system are obtained, which provides a new theoretical basis in recognizing and protecting the rotor from the subharmonic resonant failure in the turbine machinery.  相似文献   

4.
以Duffing系统为研究对象,研究在多频激励下同时发生主共振和1/3次亚谐共振的动力学行为与稳定性.首先,通过多尺度法得到系统的近似解析解,利用数值方法检验近似程度,结果吻合良好,证明了求解过程和解析解的正确性.然后,从解析解中导出稳态响应的幅频方程和相频方程,从幅频曲线以及相频曲线中发现系统最多存在7个不同的周期解,这种多解现象可用于对系统状态进行切换.基于Lyapunov稳定性理论,得到联合共振定常解的稳定条件,利用该条件分析了系统的稳定性,并与Duffing系统的主共振和1/3次亚谐共振单独存在时比较.最后,通过数值方法分析了非线性项和外激励对系统动力学行为与稳定性的影响,发现了联合共振特有的现象:刚度软化时,非线性项不仅影响系统的响应幅值,同时还影响系统的多值性和稳定性;刚度硬化时,非线性项对系统的影响与单一频率下主共振和1/3次亚谐共振类似,仅影响系统的响应幅值.这些结果对Duffing系统动力学特性的研究具有重要意义.   相似文献   

5.
The fundamental and subharmonic resonances of a two degree-of-freedom oscillator with cubic stiffness nonlinearities and linear viscous damping are examined using a multiple-seales averaging analysis. The system is in a 1–1 internal resonance, i.e., it has two equal linearized eigenfrequencies, and it possesses nonlinear normal modes. For weak coupling stiffnesses the internal resonance gives rise to a Hamiltonian Pitchfork bifurcation of normal modes which in turn affects the topology of the fundamental and subharmonic resonance curves. It is shown that the number of resonance branches differs before and after the mode bifurcation, and that jump phenomena are possible between forced modes. Some of the steady state solutions were found to be very sensitive to damping: a whole branch of fundamental resonances was eliminated even for small amounts of viscous damping, and subharmonic steady state solutions were shifted by damping to higher frequencies. The analytical results are verified by a numerical integration of the equations of motion, and a discussion of the effects of the mode bifurcation on the dynamics of the system is given.  相似文献   

6.
拱型结构在参、强激励下的非线性振动分析   总被引:4,自引:0,他引:4  
利用数值解析法研究了拱型结构在参数激励与强迫激励联合作用下的非线性振动特性。得到了轴向力与固有频率的关系及轴向力对发生主共振,1/2亚谱共振的影响,由于1/2亚谐共振是高频激振低频响应,是最危险区域,应得到足够的重视,为工程设计提供了可靠的理论依据。  相似文献   

7.
一类强非线性机械基础系统的亚谐振动解析解   总被引:3,自引:0,他引:3  
建立了机械基础动力系统的强非线性动力学模型,利用能量法对该系统的周期解进行了解析研究,确定了系统动态参数满足周期解的条件、系统的周期解以及解的稳定性判别式。发现了亚谐振动,并给出了系统在满足周期解条件下的一组参数对应的主振动、1/3亚谐振动和1/5亚谐振动。最后利用数值积分方法计算了系统在给定条件下的主振动及亚谐振动解,考察了解析解的正确性。  相似文献   

8.
本文研究了非惯性参考系中弹性薄板在范围运动与变形运动相互耦合时的1/2亚谐共振分岔,在建立了该系统的动力学控制方程的基础上,利用多尺度法得到了参数激励与强迫激励联合作用下非惯性参考系中弹性薄板1/2亚谐共振时的分岔响应方程及其分岔集,讨论了该动力系统的稳定性,给出了它的五种分响应曲线。  相似文献   

9.
The subharmonic resonance and bifurcations of a clamped-clamped buckled beam under base harmonic excitations are investigated. The nonlinear partial integrodifferential equation of the motion of the buckled beam with both quadratic and cubic nonlinearities is given by using Hamilton's principle. A set of second-order nonlinear ordinary differential equations are obtained by spatial discretization with the Galerkin method. A high-dimensional model of the buckled beam is derived, concerning nonlinear coupling. The incremental harmonic balance (IHB) method is used to achieve the periodic solutions of the high-dimensional model of the buckled beam to observe the nonlinear frequency response curve and the nonlinear amplitude response curve, and the Floquet theory is used to analyze the stability of the periodic solutions. Attention is focused on the subharmonic resonance caused by the internal resonance as the excitation frequency near twice of the first natural frequency of the buckled beam with/without the antisymmetric modes being excited. Bifurcations including the saddle-node, Hopf, perioddoubling, and symmetry-breaking bifurcations are observed. Furthermore, quasi-periodic motion is observed by using the fourth-order Runge-Kutta method, which results from the Hopf bifurcation of the response of the buckled beam with the anti-symmetric modes being excited.  相似文献   

10.
This paper investigates oscillations in a flexible rotor system with radial clearance between an outer ring of the bearing and a casing by experiments and numerical simulations. The mathematical model considers the collisions of the bearing with the casing. The following phenomena are found: (1) Nonlinear resonances of subharmonic, super-subharmonic and combination oscillation occur. (2) Self-excited oscillation of a forward whirling mode occurs in a wide range above the major critical speed. (3) Entrainment phenomena from self-excited oscillation to nonlinear forced oscillation occur at these nonlinear resonance ranges. Moreover, this study analyzes periodic solutions of the mathematical model by the Harmonic Balance Method (HBM). As the results, the nonlinear resonances of subharmonic oscillation and its entrainment phenomenon can be explained theoretically by investigating the stability of the periodic solutions. The influence of the static force and the bearing damping on these oscillation are also clarified.  相似文献   

11.
The performance of a ball bearing–rotor system is often limited by the occurrence of subharmonic resonance with considerable vibration and noise. In order to comprehend the inherent mechanism and the feature of the subharmonic resonance, a symmetrical rotor system supported by ball bearings is studied with numerical analysis and experiment in this paper. A 6DOF rotordynamic model which includes the non-linearity of ball bearings, Hertzian contact forces and bearing internal clearance, and the bending vibration of rotor is presented and an experimental rig is offered for the research of the subharmonic resonance of the ball bearing–rotor system. The dynamic response is investigated with the aid of orbit and amplitude spectrum, and the non-linear system stability is analyzed using the Floquet theory. All of the predicted results coincide well with the experimental data to validate the proposed model. Numerical and experimental results show that the resonance frequency is provoked when the speed is in the vicinity of twice synchroresonance frequency, while the rotor system loses stability through a period-doubling bifurcation and a period-2 motion i.e. subharmonic resonance occurs. It is found that the occurrence of subharmonic resonance is due to the together influence of the non-linear factors, Hertzian contact forces and internal clearance of ball bearings. The effect of unbalance load on subharmonic resonance of the rotor system is minor, which is different from that of the sliding bearing–rotor system. However, the moment of couple has an impact influence on the subharmonic resonances of the ball bearing–rotor system. The numerical and experimental results indicate that the subharmonic resonance caused by ball bearings is a noticeable issue in the optimum design and failure diagnosis of a high-speed rotary machinery.  相似文献   

12.
Approximate solutions of axially moving viscoelastic beams subject to multi-frequency excitations are presented. A non-linear partial-differential equation governing the transverse vibration of the beams is derived from Newton's second law, the Kelvin constitutive relationship, and the Lagrangian strain. Based on 1-term Galerkin's truncation, the governing equation is reduced to an ordinary differential equation. Three cases, including superharmonic resonance case, subharmonic resonance, and combination resonance are studied. The approximate solutions of the transverse vibration of the beams are obtained. Numerical results show that the approximate solutions are in good agreement with numerical results.  相似文献   

13.
In this paper, we use the asymptotic perturbation method to investigate nonlinear oscillations and chaotic dynamics in a rotor-active magnetic bearings (AMB) system with 8-pole legs and the time-varying stiffness. The stiffness in the AMB is considered as the time varying in a periodic form. Because of considering the weight of the rotor, the formulation on the electromagnetic force resultants includes the quadratic and cubic nonlinearities. The resulting dimensionless equations of motion for the rotor-AMB system with the time-varying stiffness in the horizontal and vertical directions are a two-degree-of-freedom nonlinear system with quadratic and cubic nonlinearities and parametric excitation. The asymptotic perturbation method is used to obtain the averaged equations in the case of primary parametric resonance and 1/2 subharmonic resonance. It is found that there exist period-3, period-4, period-6, period-7, period-8, quasiperiodic and chaotic modulated amplitude oscillations in the rotor-AMB system with the time-varying stiffness. It is seen from the numerical results that there are the phenomena of the multiple solutions and the soft-spring type and the hardening-spring type in nonlinear frequency-response curves for the rotor-AMB system. The parametric excitation, or the time-varying stiffness produced by the PD controller is considered to be a controlling force which can control the chaotic response in the rotor-AMB system to a period n motion.  相似文献   

14.
The Subharmonic Bifurcation of a Viscoelastic Circular Cylindrical Shell   总被引:1,自引:0,他引:1  
Xu  Kai-Yu  Cheng  Chang-Jun 《Nonlinear dynamics》1998,17(2):159-171
In this paper the nonlinear dynamic behavior of a viscoelastic circular cylindrical shell under a harmonic excitation applied at both ends is studied. The modified Flugge partial differential equations of motion are reduced to a system of finite degrees of freedom using the Galerkin method. The equations are solved by the Liapunov–Schmidt reduction procedure. In order to study 1/2 and 1/4 subharmonic parametric resonance of the shell, the transition sets in parameter plane and bifurcation diagrams are plotted for a number of situations. Results indicate that, for certain static loads, the shell may display jumps due to the presence of dynamic periodic load with small amplitude. Additionally, different physical situations are identified in which periodic oscillating phenomena can be observed, and where 1/4 subharmonic parametric resonance is simpler than the 1/2-one.  相似文献   

15.
Shen  Yongjun  Li  Hang  Yang  Shaopu  Peng  Mengfei  Han  Yanjun 《Nonlinear dynamics》2020,102(3):1485-1497
Nonlinear Dynamics - The primary and subharmonic simultaneous resonance of Duffing oscillator with fractional-order derivative is studied. Firstly, the approximately analytical solution of the...  相似文献   

16.
Liu  Wei  Li  Xiliang 《Nonlinear dynamics》2018,92(2):721-739
Nonlinear Dynamics - In this paper, we study the existence and bifurcation of subharmonic solutions of a four-dimensional slow–fast system with time-dependent perturbations for the...  相似文献   

17.
冲击消振器的概周期碰振运动分析   总被引:5,自引:0,他引:5  
建立了冲击消振器对称周期运动的Poincar啨映射方程 ,讨论了对称周期运动的稳定性与局部分岔。通过数值仿真研究了冲击消振器在非共振、弱共振和强共振条件下的概周期碰振运动及其向混沌的转迁过程。  相似文献   

18.
We apply the asymptotic perturbation (AP) method to the study of the vibrations of Euler--Bernoulli beam resting on a nonlinear elastic foundation. An external periodic excitation is in primary resonance or in subharmonic resonance in the order of one-half with an nth mode frequency. The AP method uses two different procedures for the solutions: introducing an asymptotic temporal rescaling and balancing the harmonic terms with a simple iteration. We obtain amplitude and phase modulation equations and determine external force-response and frequency-response curves. The validity of the method is highlighted by comparing the approximate solutions with the results of the numerical integration and multiple-scale methods.  相似文献   

19.
Nonlinear dynamics of a clamped–clamped capacitive micro-beam resonator subjected to subharmonic excitation of order one-half is studied. The micro-beam resonator is sandwiched with two piezoelectric layers throughout the length, and as a result of piezoelectric actuation a tensile/compressive axial load is induced along the length which is used as a frequency tuning tool. The resonator is subjected to a combination of a bias DC and harmonic AC electrostatic actuations. In order to determine the frequency response subharmonic resonance condition, both perturbation and shooting methods are applied. The stability of the periodic solutions and the bifurcations types are also studied. It is shown that the application of perturbation method imposes some limitations on the order of magnitudes of the terms in the differential equation of the motion; as a result out of the domain where the ordering assumption of the perturbation solution does not hold, some periodic solutions as well as some vital bifurcation points are missed. It is shown that on the frequency domain, the resonator exhibits both softening and hardening behaviors whereas this is not predicted by the perturbation scheme. The effect of DC and AC actuation voltages on the qualitative response of the system is determined. It is shown that based on the polarity of the piezoelectric actuation, the frequency response curves can be shifted both in forward and backward directions which can be used in the design of novel RF MEMS filters/sensors.  相似文献   

20.
The paper proposes a stabilization method for a 1/3-order subharmonic resonance with a new type of nonlinear vibration absorber using nonlinear coupling between a main system and the absorber. The main system with nonlinear restoring force and harmonic excitation, i.e., subjected to a sinusoidally changed magnetic force, is introduced as a model which produces a 1/3-order subharmonic resonance. A damped pendulum, whose natural frequency is tuned to be in the neighborhood of twice that of the main system, is connected through a link to the main system as a nonlinear vibration absorber. Theoretical results using the method of multiple scales show that only a stable nontrivial steady state is changed into an unstable one due to the effect of absorber. In addition, we numerically confirm the validity of the proposed absorber using Runge–Kutta method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号