首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
采用磁过滤直流阴极真空弧源沉积技术在Ti6Al4V表面制备C/C多层DLC膜,利用纳米压痕划痕仪测试薄膜的纳米硬度和膜-基结合强度,采用微磨粒磨损试验机对C/C多层DLC膜在模拟体液环境中的磨损性能进行评价,并与Ti6Al4V的耐磨性能进行对比.结果表明:C/C多层DLC膜硬度达54.82 GPa,弹性模量和划痕临界载荷分别为342.27 GPa和0.52 N;在模拟体液环境中DLC膜的耐磨性能显著优于Ti6Al4V合金,DLC膜的磨损机制主要包括二体磨损及混合磨损;随着料浆浓度的增加,DLC膜的磨损机制从二体磨损向混合磨损过渡.  相似文献   

2.
李小侠  李波 《摩擦学学报》2010,30(3):229-234
采用电弧离子镀技术在NiTi形状记忆合金表面制备了TiN薄膜,利用X射线衍射、扫描电子显微镜、原子力显微镜、轮廓仪、纳米压痕仪和摩擦试验机表征了TiN薄膜的相成分、表面特性、厚度、硬度和膜基结合力.通过摩擦试验对比了未镀膜和镀膜NiTi合金的摩擦磨损特性.结果表明:制得的TiN薄膜均匀、致密,提高了NiTi合金的硬度;在干摩擦、0.9%NaCl溶液和Hank′s溶液润滑介质条件下,TiN薄膜均表现出良好的减摩抗磨性能,提高了NiTi合金的抗摩擦磨损特性.  相似文献   

3.
采用超音速火焰喷涂(HVOF)和等离子体辅助化学气相沉积(PACVD)技术制备Cr3C2-NiCr/DLC复合涂层,对比研究其与单层DLC薄膜的微观结构、机械性能和不同载荷下的摩擦磨损行为. 结果表明:Cr3C2-NiCr/DLC复合涂层的结合力、承载力和摩擦学性能比单层DLC薄膜显著提高;HVOF制备的Cr3C2-NiCr中间承载层对表层DLC薄膜的微观结构和纳米硬度影响不大;Cr3C2-NiCr/DLC复合涂层在高载下的优异摩擦学性能归因于避免了高接触应力下发生塑性变形而导致DLC薄膜在摩擦磨损过程中的脆性断裂和剥落失效行为. 此外,在不同载荷下的摩擦过程中DLC薄膜和Cr3C2-NiCr/DLC复合涂层均未发生石墨化,其摩擦学行为主要取决于不同接触应力下的磨损机制变化和对偶球表面摩擦转移膜演化.   相似文献   

4.
钛合金表面掺金属类金刚石薄膜的摩擦磨损性能研究   总被引:2,自引:0,他引:2  
采用阳极层流型矩形气体离子源结合非平衡磁控溅射法在钛合金基体表面制备掺金属类金刚石(Me-DLC)薄膜,通过X射线光电子能谱仪、俄歇微探针、表面形貌仪及扫描电子显微镜等对薄膜结构进行表征,用SRV型摩擦磨损试验机评价其摩擦磨损性能.结果表明,类金刚石薄膜可以提高钛合金基体的承载能力和硬度,对基体材料起到有效的耐磨减摩作用,掺钨类金刚石薄膜的硬度及膜/基结合强度较高,具有良好的耐磨减摩性能,且在膜层承载能力范围内,载荷越高,DLC梯度薄膜的摩擦系数越小.  相似文献   

5.
Al/AlN多层膜的摩擦磨损性能研究   总被引:3,自引:0,他引:3  
采用柱状靶磁控溅射系统制备Al/AlN纳米多层膜,采用纳米压痕仪测量Al/AlN纳米多层膜的纳米硬度,在UMT-2M型摩擦磨损试验机上评价其摩擦磨损性能.结果表明:当AlN层较厚时,薄膜在很短时间内被磨穿;调节Al/AlN层厚比为2.9/1.1时,薄膜的摩擦磨损性能明显提高;当保持Al/AlN层厚比为2.9/1.1、变化多层膜的调制周期时,薄膜的摩擦系数较低,但硬度较低的薄膜由于承载能力不够,不能够保持优良的摩擦磨损性能.  相似文献   

6.
纳米弹性复合DLC薄膜的制备及其摩擦性能研究   总被引:2,自引:0,他引:2  
利用磁过滤阴极真空弧沉积系统在硅片及以硅片为基底的2种弹性体材料表面沉积厚度为2.7 nm的DLC膜,采用原子力显微镜和拉曼光谱仪对薄膜的形貌及成分进行分析,用纳米力学测试系统测量薄膜的弹性模量和硬度,用UMT-2型多功能微摩擦磨损试验机考察其摩擦性能.结果表明,以γ-缩水甘油醚氧丙基三甲氧基硅烷(187)为偶联剂的薄膜试样表面比以γ-氨丙基三乙氧基硅烷(APS)为偶联剂的薄膜试样表面更致密且粗糙度更低,薄膜的最上层为DLC膜.在硅表面沉积DLC薄膜可以显著降低其表面的摩擦系数(0.117~0.137),在低载荷条件下,含偶联剂及弹性体的DLC薄膜的摩擦系数低于硅表面沉积DLC的薄膜,且以187为偶联剂的薄膜试样的摩擦性能更佳;在高载荷条件下,硅表面沉积DLC的薄膜具有更优异的摩擦性能.  相似文献   

7.
采用磁过滤阴极弧等离子体沉积技术,在单晶硅片上制备了不同亚层厚度和亚层弹性模量匹配的nc-Ti C/a-C纳米复合多层薄膜,采用X射线粉末衍射仪、扫描电子显微镜和透射电子显微镜对其微观结构进行表征,利用激光扫描仪对其内部应力进行测试,采用微摩擦磨损试验机表征薄膜的摩擦磨损性能,以考察多层结构设计对于薄膜机械性能的影响.结果表明:多层薄膜相对于单层薄膜可以有效降低膜层内应力,同时薄膜的减摩抗磨性能也得到了提高.亚层厚度为40 nm和相邻亚层弹性模量差距较小的nc-Ti C/a-C纳米复合多层薄膜的抗磨性能最佳.  相似文献   

8.
氮化钛沉积膜的摩擦性能研究   总被引:3,自引:3,他引:3  
采用等离子电弧沉积法在9Crl8钢表面制备了厚约0.5μm的TiN薄膜,通过显微硬度测试以及纳米压痕和纳米划痕试验,对比考察了9Crl8钢及其表面T|N薄膜的机械和摩擦性能.结果表明,9Crl8钢及其表面T.N沉积膜的纳米硬度分别为8GPa和38GPa,弹性模量分别为250GPa和580GPa,9Crl8、TiN和有机薄膜的摩擦系数分别为0.40、0.12和0.10;TiN沉积膜可显著提高基体钢的承载和耐磨能力.  相似文献   

9.
TiN/TaN多层膜的结构和摩擦学性能   总被引:6,自引:1,他引:6  
利用磁控溅射法在单晶硅基底上制备了一系列TiN/TaN多层膜; 采用X射线衍射仪、显微硬度计、球-盘摩擦磨损试验机和三维表面形貌仪等分析了多层膜的结构、硬度、摩擦学性能和磨损机制.结果表明:所制备的多层膜具有良好的周期性和清晰的界面结构,其中TiN层具有面心立方结构,当TaN层在调制周期Λ值小于8.5 nm时具有面心立方结构,在调制周期Λ值大于8.5 nm时具有部分六方结构;多层膜的硬度受调制周期影响,当调制周期Λ值为8.5 nm时,显微硬度达到最大值31.5 GPa.相对于TiN薄膜而言,TiN/TaN多层膜的摩擦系数较高、耐磨性能更好;多层膜的磨损机制主要为犁削、粘着和局部剥落.  相似文献   

10.
采用中频磁控溅射技术在AISI 440C钢表面制备了不同调制周期的Cr/Ag纳米多层薄膜.通过X射线衍射仪(XRD)及高分辨透射电子显微镜(HRTEM)分析表征了纳米多层薄膜的微观组织结构,通过划痕试验机与真空球-盘摩擦试验机分别测试了纳米多层薄膜膜-基结合强度及真空摩擦学性能,并与纯Ag薄膜及Cr/Ag双层薄膜进行了对比.结果表明:纳米多层结构可以显著提高Ag基固体润滑薄膜膜-基结合强度,Cr/Ag纳米多层薄膜在较高转速及载荷条件下表现出明显优于纯Ag及Cr/Ag双层薄膜的摩擦学性能.Cr薄膜层与钢基体表面良好结合以及纳米多层薄膜内良好的层间结合性能是纳米多层薄膜膜-基结合强度提高的主要原因.  相似文献   

11.
C/C复合材料微观结构对其制动摩擦磨损性能的影响   总被引:1,自引:0,他引:1  
采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)等手段研究了基体炭分别为树脂炭和粗糙层热解炭结构的C/C复合材料的微观结构,并探讨了材料的微结构对其制动摩擦磨损性能的影响.结果表明:炭纤维附近的树脂炭被高度石墨化,导致树脂炭样件具有适当、稳定的摩擦系数;树脂炭片层之间存在明显的裂纹,远离炭纤维的树脂炭仍是各向同性结构,容易被剪切力剪断,产生大量碎屑,破坏了摩擦动态平衡,磨损量大是制约其作为优良制动摩擦材料的关键因素.  相似文献   

12.
采用M-2000型摩擦磨损试验机研究了干摩擦条件下纤维取向对C/C复合材料与40Cr钢摩擦副摩擦磨损特性的影响.结果表明:随着载荷增加,纤维轴向与滑动方向一致(X方向)时的摩擦系数较垂直滑动方向/摩擦表面(Y/Z方向)时的变化幅度低,X方向试样基体炭的磨屑损耗快,磨损较大;Y/Z方向试样基体炭的磨屑移动能力低,易堆积成膜,但在高载荷下纤维易被剪切.对于全光滑层热解炭材料,随着载荷增加,其X方向的磨损体积损失在0.4266~0.997mm^3之间,Y方向的磨损体积损失在0.448~1.020mm^3之间,而Z方向的磨损体积损失在0.349~1.420mm^3之间;对于全树脂炭材料,X方向的磨损体积损失随载荷增加在0.429~1.134mm^3之M波动,而Y方向的磨损体积损失在0.237~0.981mm^3之间变化.  相似文献   

13.
刹车速度对C/C复合材料制动摩擦性能的影响   总被引:14,自引:3,他引:11  
在MM-1000型摩擦磨损试验上考察了碳布叠层结构的C/C复合材料在不同速度下的制动摩擦磨损行为,并用扫描电子显微镜观察分析了试样磨损表面形貌,结果表明:随着刹车速度的增大,摩擦系数增大,在20-25m/s速度范围出现峰值;当刹车速度增大至28-30m/s时,摩擦系数仍保持较高,体现了优良的高能摩擦特性;磨损量在低速时较小,当刹车速度大于15m/s,磨损量迅速增大,低速时磨损表面由一层薄的磨屑层所覆盖,当速度大于15m/s,大量的磨屑形成一层较厚的磨屑层,高速时由于剧烈的氧化和剪切作用,很多基质碳被氧化剥落,炭纤维被磨断、拔出,使磨损增大。  相似文献   

14.
PAN炭纤维预制体对C/C复合材料滑动摩擦磨损行为的影响   总被引:1,自引:0,他引:1  
以二维平纹编织叠层炭纤维坯体(2D)、二维无纬布/炭毡混合叠层针刺毡坯体(2DN)、三维正交编织炭纤维坯体(3D)为预制体,采用化学气相渗透结合树脂浸渍炭化技术进行增密,制备了4种C/C复合材料.在室温干态条件下测试4种C/C复合材料与表面镀Cr的40Cr钢配副时的滑动摩擦行为.结果表明:在试验载荷下,采用2D坯体增强的C/C复合材料摩擦系数最高;随载荷增加,其摩擦系数和磨损体积的波动幅度最大,分别为0.17和1.22mm3;采用2DN坯体的2种C/C复合材料摩擦系数较低,在0.13~0.17之间,且随时间延长呈下降趋势;其余2种坯体的C/C复合材料摩擦系数则上升.4种材料摩擦系数的波动幅度均逐渐降低.SEM观察表明:采用2D坯体C/C复合材料在低载荷下的摩擦表面粗糙,充满磨屑,高载荷下能形成了较松散的摩擦膜.而采用2DN、3D坯体的C/C复合材料摩擦表面部分形成了较完整、致密的摩擦膜,部分呈现显著的纤维磨损和摩擦膜大块剥落形貌.  相似文献   

15.
C60的摩擦学特性研究   总被引:4,自引:0,他引:4  
采用四球摩擦磨损试验机考察了C60添加剂对液体石蜡的抗磨和极压性能的影响,并与2种国外的商用润滑油添加剂进行了极压性能对比研究,发现C60在较高速度范围内具有一定的极压与润滑作用,其经过适宜的改性处理可望成为优良的润滑油添加剂。  相似文献   

16.
环境气氛对C/C复合材料载流摩擦学性能的影响   总被引:1,自引:0,他引:1  
在HST-100销盘式高速载流摩擦磨损试验机上,以电流、速度、载荷为试验参数对C/C复合材料/QCr0.5摩擦副进行载流摩擦磨损试验,分别分析空气、氮气对C/C复合材料磨损率和摩擦系数的影响.试验结果表明:相较于空气气氛,氮气气氛下摩擦系数较高,磨损率较低.通过扫描电子显微镜和能谱仪对不同气氛下材料磨损表面形貌和成分进行观察,从微观上解释了两种气氛对C/C复合材料磨损率和摩擦系数的作用机理.  相似文献   

17.
B4C/(W,Ti)C陶瓷喷砂嘴冲蚀磨损机理研究   总被引:1,自引:2,他引:1  
采用热压烧结工艺制备了B4C/(W,Ti)C陶瓷喷砂嘴;采用SiC、白刚玉和棕刚玉磨粒对所制备的喷砂嘴进行冲蚀试验,在应力分析基础上探讨了陶瓷喷砂嘴的冲蚀磨损机理,结果表明:B4C/(W,Ti)C陶瓷喷砂嘴的冲蚀率随着磨粒硬度和粒度的提高而增大;喷砂嘴入口磨损最严重,出口次之,而中间区域磨损相对较轻;相应的应力分析结果同试验结果相吻合;以棕刚玉作为冲蚀磨料时,B4C/(W,Ti)C陶瓷喷砂嘴主要呈现应力疲劳断裂冲蚀特征,而以白刚玉和SiC作为冲蚀磨料时,喷砂嘴入口处主要呈现脆性断裂冲蚀特征,中问区域则主要呈现应力疲劳断裂冲蚀特征。  相似文献   

18.
C/C复合材料及高强石墨高温摩擦磨损性能对比研究   总被引:10,自引:3,他引:10  
采用MG-2000型摩擦磨损试验机对比考察了C/C复合材料及航空发动机主轴密封环拟用材料高强石墨的高温摩擦磨损行为,采用显微激光拉曼光谱仪及扫描电子显微镜分析了C/C复合材料磨损表面组成及形貌.结果表明:具有粗糙层和光滑层复合结构的C/C复合材料的高温摩擦磨损性能明显优于高强石墨材料,适合用作航空发动机主轴密封环材料;C/C复合材料的高温摩擦磨损性能取决于磨粒磨损、粘着磨损及氧化磨损的共同作用.  相似文献   

19.
激光熔覆Cr3C2/Co基合金复合涂层组织与摩擦磨损性能研究   总被引:6,自引:0,他引:6  
在低碳钢表面激光熔覆制备了添加质量分数40%Cr3C2的钴基合金复合涂层(Cr3C2/Co),研究了激光熔覆Cr3C2/Co涂层的显微组织、相结构、显微硬度及其摩擦磨损性能,并与激光熔覆钴基合金涂层(Co60)进行了相同工艺条件下的对比试验.结果表明,激光熔覆Co60涂层以亚共晶方式结晶,涂层组织主要由大量初生γ-Co枝晶固溶体及其间的共晶组织γ-Co Cr23C6组成;激光熔覆Cr3C2/Co涂层以过共晶方式结晶,组织主要由未熔Cr3C2粒子、大量杆状和块状的富Cr碳化物(M7C3及M23C6型碳化物)以及其间的细小枝晶与共晶组织组成.添加Cr3C2改变了Co60涂层的凝固特征,未熔Cr3C2粒子起到了非自发形核作用,在其周围形成了许多富Cr碳化物,细化了涂层枝晶组织.激光熔覆Cr3C2/Co涂层的显微硬度及其耐磨性比Co60涂层明显提高.Co60涂层主要磨损机理为脆性剥落和犁削,Cr3C2/Co涂层的磨损机理主要为轻微犁削.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号