首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the mechanism of residual gas trapping at a microscopic level. We imaged trapped air bubbles in a Berea sandstone chip after spontaneous imbibition at atmospheric pressure. The pore structure and trapped bubbles were observed by microfocused X-ray computed tomography. Distributions of trapped bubbles in Berea and Tako sandstone were imaged in coreflooding at a capillary number of 1.0 × 10−6. Trapped bubbles are of two types, those occupying the center of the pore with a pore-scale size and others having a pore-network scale size. In low-porosity media such as sandstone, connected bubbles contribute greatly to trapped gas saturation. Effects of capillary number and injected water volume were investigated using a packed bed of glass beads 600μm in diameter, which had high porosity (38%). The trapped N2 bubbles are stable against the water flow rate corresponding to a capillary number of 1.0 × 10−4.  相似文献   

2.
滑坡监测工作已经开展了多年,本文提出滑坡监测的内容包括基础因子、诱发因子和过程因子三部分,认为诱发因子和过程因子是滑坡监测的重点。针对降雨型滑坡监测,提出降雨-入渗-位移变形三者相结合的滑坡监测技术方法,并在河口糖厂滑坡监测工程中应用,实现了监测数据的实时自动采集、自动传输、自动入库的全自动监测系统。通过监测可知,河口糖厂滑坡降雨超过50mm达到67mm时,雨水入渗深度为7m; 10d累计降雨量达到110mm时,雨水入渗深度超过7m,但未至12m; 雨水由0m入渗至7m的入渗速率为0.53m ·h-1,由7m至12m的入渗速率为0.29m ·h-1。  相似文献   

3.
An experimental study is performed on air-liquid-particle mixing, resulting from an air-particle mixture injected into a liquid flowing through a slender ladle. Flow visualization combined with image processing is employed to investigate the bubble and particle behavior at the nozzle outlet. Effort is directed to particle discrimination in both the liquid and the bubbles to determine particle distribution, which affects the mixing performance of gas bubbles, solid particles and liquid. A real-time movement of bubble and particle behavior can be visualized by means of image processing with the use of a slow-motion video recording. It is disclosed that the particles injected through the nozzle may stick on the inner surface of the gas bubble, break through the bubble surface, or mingle with the gas stream to form a two-phase jet, depending on the particle-to-gas mass flow rate ratio. It is observed that when a solid-gas two-phase jet penetrates deeper in the horizontal direction, the particles and bubbles rise along the vertical sidewall and simultaneously spread in the transverse direction, thus promoting a better liquid-particle mixing. The application of the slow-motion video recording results in quantitative evaluations of both the penetration depth of particles or of gas-particles from the injection nozzle and the velocity distribution along the sidewall.List of symbols B Width of water vessel, m - B n Nozzle location on bottom surface of water vessel, m - d o Diameter of a gas-particle injection nozzle, m - H Height of water vessel, m - H n Nozzle location on vertical surface of water vessel, m - L Penetration length of particles or of particles and gas from the nozzle, m - Q g Volumetric flow rate of gas, m3/s - Q l Volumetric flow rate of water, m3/s - Q s Volumetric flow rate of particle, m3/s - Re g Gas Reynolds number based on inner diameter of the air-particle injection nozzle - t Time, sec. - W Thickness of water vessel, m - x Transverse coordinate, m - y Longitudinal coordinate, m - Mass flow rate ratio of particles to gas Visiting scholar on leave from the Mechanical Engineering Department, Kagoshima University, Kagoshima, JapanThe work reported was supported by the National Science Foundation under the Grant No. CTS-8921584  相似文献   

4.
曹兴山  卿春和 《力学学报》2007,15(3):338-345
西气东输工程中卫黄河穿越隧道长1197.77m,高4.3m,宽5.6m。隧道入口高于黄河水位28m,出口高于黄河水位45m。隧道顶板高程为1130m。位于黄河水下100m。隧道场地围岩为寒武系磨盘井组灰绿色、银灰色浅变质中厚层细粒长石石英砂岩、千枚状板岩、绢云母化千枚岩。围岩为弱风化Ⅲ~Ⅳ类岩石。透水率为4~67Lu,纵波波速为500~3300m.s-1。BQ为300~400。变形模量为6.11~9.22GPa。泊松比(μ)0.14~0.24。内摩擦角(ψ)为42.1°~44.7°。地下水为基岩裂隙水。含水层为寒武系浅变质岩,受大气降水渗入补给,单井涌水量为1.0~50m3.d-1。隧道轴线穿越区岩体较完整—较破碎,未有全新活动断层。隧道位置选择和开挖深度设计是可行的。施工和长期运营是安全的。  相似文献   

5.
Full scale bubbly flow experiments were performed on a 6 m flat bottom survey boat, measuring the void fraction, bubble velocity and size distributions as the bubbles naturally entrained at the bow of the boat interact with the boat’s boundary layer. Double-tip sapphire optical probes capable of measuring bubbles down to 50 μm in diameter were specifically designed and built for this experiment. The probes were positioned under the hull at the bow near the bubble entrainment region and at the stern at the exit of the bottom flat plate. Motorized positioners were used to vary the probe distance to the wall from 0 to 50 mm. The experiments were performed in fresh water (Coralville Lake, IA) and salt water (Panama City Beach, FL), at varying velocities with most data analysis performed at 10, 14 and 18 knots. The results indicate that the bubbles interact significantly with the boundary layer. At low velocity in fresh water, bubble accumulation under the hull and coalescence are evident by the presence of large bubbles at the stern. At high speeds bubble breakup dominates and very small bubbles are produced near the wall. It is also observed that salt water inhibits coalescence, even at low boat speeds. The void fraction increases with speed beyond 10 knots and peaks near the wall. Bubble velocities show slip with the wall at all speeds and exhibit large RMS fluctuations, increasing near the wall.  相似文献   

6.
A recent technique of simultaneous particle image velocimetry (PIV) and pulsed shadow technique (PST) measurements, using only one black and white CCD camera, is successfully applied to the study of slug flow. The experimental facility and the operating principle are described. The technique is applied to study the liquid flow pattern around individual Taylor bubbles rising in an aqueous solution of glycerol with a dynamic viscosity of 113×10–3 Pa s. With this technique the optical perturbations found in PIV measurements at the bubble interface are completely solved in the nose and in annular liquid film regions as well as in the rear of the bubble for cases in which the bottom is flat. However, for Taylor bubbles with concave oblate bottoms, some optical distortions appear and are discussed. The measurements achieved a spatial resolution of 0.0022 tube diameters. The results reported show high precision and are in agreement with theoretical and experimental published data.Symbols D internal column diameter (m) - g acceleration due to gravity (m s–2) - l w wake length (m) - Q v liquid volumetric flow rate (m3 s–1) - r radial position (m) - r * radial position of the wake boundary (m) - R internal column radius (m) - U s Taylor bubble velocity (m s–1) - u z axial component of the velocity (m s–1) - u r radial component of the velocity (m s–1) - z distance from the Taylor bubble nose (m) - Z * distance from the Taylor bubble nose for which the annular liquid film stabilizes (m) Dimensionless groups Re Reynolds number ( ) - N f inverse viscosity number ( ) Greek letters liquid film thickness (m) - liquid kinematic viscosity (m2 s–1) - liquid dynamic viscosity (Pa s) - liquid density (kg m–3)  相似文献   

7.
The water distribution in the capillary fringe (CF) reflects the interaction of a strongly wetting fluid in a heterogeneous porous medium. Field profiles of gravimetric water content of the CF for a 30m deep, sandy, phreatic aquifer in Israel are critically analyzed in the context of the possible wetting and drainage processes in these sediments. A highly plausible explanation of the profiles is based on the spatial configuration of the CF surface determined from a model of the movement of water within the porous medium. The structural types of CF that can arise from a number of competing pore-scale displacement mechanisms, in the presence of gravity, are characterized by the model. We differentiate between two generic types of CF structures: a tenuous invasion-percolation type and a compact type. Flow, in response to a horizontal pressure gradient, associated with each structure is analyzed. Our interpretation of the field data supports the compact structure with a spatial variation in the height of the CF surface, above the water table, on the order of 1m. In this compact structure horizontal flow is characterized by stagnant regions in the CF above a critical height h c and flow only for regions below h c . The field water content (at h c ) may be used to predict the onset of lateral water flow in the CF.  相似文献   

8.
The encounter of bubble pairs of O(1 mm) in both pure water and aqueous surfactant solutions was studied experimentally. In pure water, two equally sized bubbles were found to coalesce if the Weber number, W = V2 R/, based on the velocity of approach, V, was below a critical value, Wcr = 0.18, where and are the density and surface tension of the liquid respectively and R the equivalent radius of the bubbles. After coalescence bubbles perform volume and shape oscillations.When Wcr is exceeded, bubbles bounce. After bouncing, bubbles can either coalesce or separate without coalescing. This was found to depend on the Weber number, based on the rise velocity U, We = U2 R/. If this number was below a critical value, bubbles coalesced after bouncing. The relative motion of the bubbles was found to be damped out by acoustic damping due to surface oscillations rather then by viscosity.If We was above a critical value, which was close to that for path instability of a single bubble (We = 3.3), the bubbles separated after bouncing. This is probably caused by shedding of vortices which dominate the relative motion of the bubbles. This mechanism may cause bubbles in bubbly flows not aggregating in horizontal planes, as was found in calculations based on potential flow theory. For modelling bubbly flows it will therefore be essential to incorporate the influence of vorticity.When surfactants are added to the water it was found that bubbles are prevented to coalesce above a critical concentration, which is nearly identical to that of single rising bubbles. Above this critical concentration, bubbles behave as rigid spheres and trajectories cannot be predicted by potential flow theory.  相似文献   

9.
An experimental investigation of cocurrent bubble flow in 0.0254 m and 0.0508 m diameter horizontal pipelines has been performed. Gas and liquid mass velocities ranged from 0.00955 to 0.675 and 2720 to 6040 kg/m2 sec, respectively, and gas-phase holdups or void fractions ranged from 0.13 to 7.59%.High speed motion pictures revealed that the gas, introduced into the liquid with a concentric nozzle, emerged in the form of a rough jet which was ultimately sheared into 1 times; 10minus;3 to 3 times; 10minus;3m diameter bubbles. Approximately 4 meters downstream from the nozzle, a well developed bubble flow was observed where bubble number density and axial velocity were constant with respect to axial position in the pipeline. Bubble velocities ranged from 0.001 to 0.57 m/sec greater than the average liquid velocities. Bubble radial and circumferential spatial distributions were found to be a strong function of the degree of turbulence in the liquid phase. Because of these turbulent flow conditions, bubble shapes were much different than those of equivalent diameter bubbles rising in stagnant liquids. A sphere-ellipsoid of revolution model was developed for characterization of bubble shape and computation of gas-liquid interfacial area and two-phase pressure drop.  相似文献   

10.
Micro-bubble drag reduction experiments were conducted in a turbulent water channel flow. Compressed nitrogen was used to force flow through a slot injector located in the plate beneath the boundary layer of the tunnel test section. Gas and bubbly mixtures were injected into a turbulent boundary layer (TBL), and the resulting friction drag was measured downstream of the injector. Injection into tap water, a surfactant solution (Triton X-100, 20 ppm), and a salt-water solution (35 ppt) yielded bubbles of average diameter 476, 322 and 254 μm, respectively. In addition, lipid stabilized gas bubbles (44 μm) were injected into the boundary layer. Thus, bubbles with d + values of 200 to 18 were injected. The results indicate that the measured drag reduction by micro-bubbles in a TBL is related strongly to the injected gas volumetric flow rate and the static pressure in the boundary layer, but is essentially independent of the size of the micro-bubbles over the size range tested.  相似文献   

11.
Particle tracking velocimetry (PTV) is applied to a bubbly two-phase turbulent flow in a horizontal channel at Re = 2 × 104 to investigate the turbulent shear stress profile which had been altered by the presence of bubbles. Streamwise and vertical velocity components of liquid phase are obtained using a shallow focus imaging method under backlight photography. The size of bubbles injected through a porous plate in the channel ranged from 0.3 to 1.5 mm diameter, and the bubbles show a significant backward slip velocity relative to liquid flow. After bubbles and tracer particles are identified by binarizing the image, velocity of each phase and void fraction are profiled in a downstream region. The turbulent shear stress, which consists of three components in the bubbly two-phase flow, is computed by analysis of PTV data. The result shows that the fluctuation correlation between local void fraction and vertical liquid velocity provides a negative shear stress component which promotes frictional drag reduction in the bubbly two-phase layer. The paper also deals with the source of the negative shear stress considering bubble’s relative motion to liquid.  相似文献   

12.
田伟  戴福初  许领  邝国麟 《力学学报》2010,18(4):516-520
深圳赖屋山的一挡墙表面出现数条裂缝,为了深入研究其变形破坏机制,在挡墙背后填土区布置自动监测仪器,主要包括渗压计、张力计与水分计及固定式测斜仪。通过对渗压计、张力计和水分计的监测数据分析表明:填土内地下水位埋深大,降雨对其影响小; 土体中孔隙压力和体积含水量对强降雨响应随着埋深存在不同程度的滞后性,强降雨入渗深度大于3m,并且在3m处形成瞬态饱和地下水,抗剪强度降低,易于引起边坡的浅层变形破坏。
  相似文献   

13.
利用多年冻土区昆仑山隧道2#冲沟帷幕注浆的机会,将注浆孔当作测试孔,测试每个孔的水位和孔温。通过测试孔水位、孔温和注浆量变化分析,判断2#冲沟融区发育特征,得出2#冲沟沟底的融化深度远大于通常的冻土上限;阳坡地温高于阴坡地温;在2#冲沟段,昆仑山隧道中心线左右至少7m范围内为融化区,融区深度在隧底25m以下;阳坡地层的孔隙率高于阴坡孔隙率,沟底岩层与地表有较为畅通的地下水流通道,沟底地下水渗流通道明显优于两侧山坡,沟心纵断面位置附近存在至少一条未被冻结的地下水通道,且该通道的埋置深度至少可达1730m,为昆仑山隧道渗漏水病害治理提供依据。  相似文献   

14.
New Trapping Mechanism in Carbon Sequestration   总被引:1,自引:0,他引:1  
The modes of geologic storage of CO2 are usually categorized as structural, dissolution, residual, and mineral trapping. Here we argue that the heterogeneity intrinsic to sedimentary rocks gives rise to a fifth category of storage, which we call local capillary trapping. Local capillary trapping occurs during buoyancy-driven migration of bulk phase CO2 within a saline aquifer. When the rising CO2 plume encounters a region (10−2 to 10+1m) where capillary entry pressure is locally larger than average, CO2 accumulates beneath the region. This form of storage differs from structural trapping in that much of the accumulated saturation will not escape, should the integrity of the seal overlying the aquifer be compromised. Local capillary trapping differs from residual trapping in that the accumulated saturation can be much larger than the residual saturation for the rock. We examine local capillary trapping in a series of numerical simulations. The essential feature is that the drainage curves (capillary pressure versus saturation for CO2 displacing brine) are required to be consistent with permeabilities in a heterogeneous domain. In this work, we accomplish this with the Leverett J-function, so that each grid block has its own drainage curve, scaled from a reference curve to the permeability and porosity in that block. We find that capillary heterogeneity controls the path taken by rising CO2. The displacement front is much more ramified than in a homogeneous domain, or in a heterogeneous domain with a single drainage curve. Consequently, residual trapping is overestimated in simulations that ignore capillary heterogeneity. In the cases studied here, the reduction in residual trapping is compensated by local capillary trapping, which yields larger saturations held in a smaller volume of pore space. Moreover, the amount of CO2 phase remaining mobile after a leak develops in the caprock is smaller. Therefore, the extent of immobilization in a heterogeneous formation exceeds that reported in previous studies of buoyancy-driven plume movement.  相似文献   

15.
We aim at deriving the apparent unsaturated conductivity (AUC) K (ap), defined as the ratio between the mean flux and the mean head gradient in a stratified vadose zone above the water table. This is achieved for steady flow generated by a constant infiltrating flux applied at the soil surface. By adopting the first-order approximation in the two parameters of the conductivity curve, and under a few additional simplifying assumptions, we were able to analytically compute K (ap). It is shown that this latter varies between K (ap)K H (the harmonic mean) at the water table, and K (ap)K ef (the effective conductivity in gravitational flow) far above the water table. Profiles of the AUC are illustrated, and the impact of parameters values is discussed.  相似文献   

16.
We investigate frictional-drag reduction with electrolytic microbubbles based on image measurement of a turbulent flow in a water channel at Re = 4800 (based on the half channel height). Microbubbles with a diameter ranging 30–200 μm can reduce frictional drag by as much as 30% relative to single-phase flow even at low void fractions (α ≈ 3 × 10−4); however, drag reduction is only effective within a limited downstream distance from an electrode array. Arrangement of the optical system allows us to measure the bubble-production rate by water electrolysis from images near the wall and to trace the motion of bubbles. We also measure velocity fields using particle-tracking velocimetry based on a shallow depth-of-field approach by segregating tracer particles from microbubbles. Vertically oscillating microbubbles likely represent interaction with vortical structures near the wall, and bubbles approaching the wall appear to induce negative streamwise velocity relative to the surrounding fluid. We relate the wall friction with the double integral of the Reynolds-stress profile and show that its variation due to microbubbles decreases the drag on the wall. Microbubbles tend to coalesce downstream resulting in a fewer bubbles but with greater size; accordingly, the oscillatory motion diminishes, and the frictional drag rather increases.  相似文献   

17.
Natural convection heat transfer phenomena on horizontal cylinders were investigated experimentally in order to explore the applicability of analogy experimental method using the copper electroplating system and to visualize the local heat transfer depending on the angular position and the diameter of the horizontal cylinder. The diameters of the cylinders are varied from 0.01 to 0.15 m, which correspond to the Rayleigh numbers of 1.73 × 107–5.69 × 1011. The measured mass transfer coefficients show good agreements with the existing heat transfer correlations. The patterns of copper plated on the aluminum cathodes for various Rayleigh numbers reveal and visualize the local heat transfer depending on the angular position and show good agreement with the works of Kitamura et al. The hydrogen bubbles produced at higher applied potential visualize the plumes appeared on top region of the cylinders.  相似文献   

18.
The effects of solid particles on the flow structure in the near field region of a coaxial water jet are investigated non-intrusively using molecular tagging velocimetry. Glass beads of 240 μm and specific gravity SG of 2.46 are used at three volume loadings of γv=0.03, 0.06, and 0.09% in the central water jet with a Reynolds number of 4.1×104. Measurements are acquired for four annular to central jet velocity ratios in the range 0.11≤ U o/U i≤1.15 at downstream distances up to six inner jet diameters and the results are analyzed for the effects of solid particles on the characteristics of flow. It is found that the addition of particles does not affect the mean fluid velocity profile in this region. The results also indicate a small and moderate enhancement of axial turbulent velocity and radial gradients of velocity fluctuations, respectively, due to the presence of particles.  相似文献   

19.
In high-velocity open channel flows, the measurements of air–water flow properties are complicated by the strong interactions between the flow turbulence and the entrained air. In the present study, an advanced signal processing of traditional single- and dual-tip conductivity probe signals is developed to provide further details on the air–water turbulent level, time and length scales. The technique is applied to turbulent open channel flows on a stepped chute conducted in a large-size facility with flow Reynolds numbers ranging from 3.8E+5 to 7.1E+5. The air water flow properties presented some basic characteristics that were qualitatively and quantitatively similar to previous skimming flow studies. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level at a macroscopic scale, and the auto- and cross-correlation functions at the microscopic level. New correlation analyses yielded a characterisation of the large eddies advecting the bubbles. Basic results included the integral turbulent length and time scales. The turbulent length scales characterised some measure of the size of large vortical structures advecting air bubbles in the skimming flows, and the data were closely related to the characteristic air–water depth Y 90. In the spray region, present results highlighted the existence of an upper spray region for C > 0.95–0.97 in which the distributions of droplet chord sizes and integral advection scales presented some marked differences with the rest of the flow.  相似文献   

20.
The transition from supercritical to subcritical open channel flow is characterised by a strong dissipative mechanism called a hydraulic jump. A hydraulic jump is turbulent and associated with the development of large-scale turbulence and air entrainment. In the present study, some new physical experiments were conducted to characterise the bubbly flow region of hydraulic jumps with relatively small Froude numbers (2.4 < Fr1 < 5.1) and relatively large Reynolds numbers (6.6 × 104 < Re < 1.3 × 105). The shape of the time-averaged free-surface profiles was well defined and the longitudinal profiles were in agreement with visual observations. The turbulent free-surface fluctuation profiles exhibited a peak of maximum intensity in the first half of the hydraulic jump roller, and the fluctuations exhibited some characteristic frequencies typically below 3 Hz. The air–water flow properties showed two characteristic regions: the shear layer region in the lower part of the flow and an upper free-surface region above. The air–water shear layer region was characterised by local maxima in terms of void fraction and bubble count rate. Other air–water flow characteristics were documented including the distributions of interfacial velocity and turbulence intensity. The probability distribution functions (PDF) of bubble chord time showed that the bubble chord times exhibited a broad spectrum, with a majority of bubble chord times between 0.5 and 2 ms. An analysis of the longitudinal air–water structure highlighted a significant proportion of bubbles travelling within a cluster structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号