首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
Laser induced stress waves are used to characterize intrinsic interfacial strength of thin films under both tensile and mixed-mode conditions. A short-duration compressive pulse induced by pulsed-laser ablation of a sacrificial layer on one side of a substrate is allowed to impinge upon a thin test film on the opposite surface. Laser-interferometric measurements of test film displacement enable calculation of the stresses generated at the interface. The tensile stress at the onset of failure is taken to be the intrinsic tensile strength of the interface. Fused-silica substrates, with their negative nonlinear elasticity, cause the compressive stress wave generated by the pulse laser to evolve a decompression shock, critical for generation of the fast fall times needed for significant loading of surface film interfaces. By allowing the stress pulse to mode convert as it reflects from an oblique surface, a high amplitude shear wave with rapid fall time is generated and used to realize mixed-mode loading of thin film interfaces. We report intrinsic strengths of an aluminum/fused silica interface under both tensile and mixed-mode conditions. The failure mechanism under mixed-mode loading differs significantly from that observed under pure tensile loading, resulting in a higher interfacial strength for the mixed-mode case. Inferred strengths are found to be independent, as they should be, of experimental parameters.  相似文献   

2.
The mixed-mode interfacial adhesion strength between a gold (Au) thin film and an anisotropic passivated silicon (Si) substrate is measured using laser-induced stress wave loading. Test specimens are prepared by bonding a fused silica (FS) prism to the back side of a 〈1 0 0〉 Si substrate with a thin silicon nitride (SixNy) passivation layer deposited on the top surface. A high-amplitude stress wave is developed by pulsed laser ablation of a sacrificial absorbing layer on one of the lateral surfaces of the FS prism. Due to the negative non-linear elastic properties of the FS, the compressive stress wave evolves into a decompression shock with fast fall time. Careful selection of the incident angle between the pulse and the FS/Si interface generates a mode-converted shear wave in refraction, subjecting the SixNy/Au thin film interface to dynamic mixed-mode loading, sufficient to cause interfacial fracture. A detailed analysis of the anisotropic wave propagation combined with interferometric measurements of surface displacements enables calculation of the interfacial stresses developed under mixed-mode loading. The mixed-mode interfacial strength is compared to the interfacial strength measured under purely tensile loading.  相似文献   

3.
A new test method is developed for studying mixed-mode interfacial failure of thin films using laser generated stress waves. Guided by recent parametric studies of laser-induced tensile spallation, we successfully extend this technique to achieve mixed-mode loading conditions. By allowing an initial longitudinal wave to mode convert at an oblique surface, a high amplitude shear wave is generated in a fused silica substrate and propagated toward the thin-film surface. A shear wave is obtained with amplitude large enough to fail an Al film/fused silica interface and the corresponding shear stress calculated from high-speed interferometric displacement measurements. Examination of the interfaces failed under mixed-mode conditions reveals significant wrinkling and tearing of the film, in great contrast to blister patterns observed in similar Al films failed under tensile loading.  相似文献   

4.
Current methodologies used for the inference of thin film stress through curvature measurement are strictly restricted to stress and curvature states that are assumed to remain uniform over the entire film/substrate system. These methodologies have recently been extended to a single layer of thin film deposited on a substrate subjected to the non-uniform misfit strain in the thin film. Such methodologies are further extended to multi-layer thin films deposited on a substrate in the present study. Each thin film may have its own non-uniform misfit strain. We derive relations between the stresses in each thin film and the change of system curvatures due to the deposition of each thin film. The interface shear stresses between the adjacent films and between the thin film and the substrate are also obtained from the system curvatures. This provides the basis for the experimental determination of thin film stresses in multi-layer thin films on a substrate.  相似文献   

5.
Current methodologies used for the inference of thin film stress through curvature measurements are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. Recently Huang, Rosakis and co-workers [Huang, Y., Ngo, D., Rosakis, A.J., 2005. Non-uniform, axisymmetric misfit strain: in thin films bonded on plate substrates/substrate systems: the relation between non-uniform film stresses and system curvatures. Acta Mech. Sin. 21, 362–370; Huang, Y., Rosakis A.J., 2005. Extension of Stoney’s Formula to non-uniform temperature distributions in thin film/substrate systems. The case of radial symmetry. J. Mech. Phys. Solids 53, 2483–2500; Ngo, D., Huang, Y., Rosakis, A. J., Feng, X. 2006. Spatially non-uniform, isotropic misfit strain in thin films bonded on plate substrates: the relation between non-uniform film stresses and system curvatures. Thin Solid Films (in press)] established methods for film/substrate system subject to non-uniform misfit strain and temperature changes. The film stresses were found to depend non-locally on system curvatures (i.e., depend on the full-field curvatures). The existing methods, however, all assume uniform film thickness which is often violated in the thin film/substrate system. We extend these methods to arbitrarily non-uniform film thickness for the thin film/substrate system subject to non-uniform misfit strain. Remarkably the stress-curvature relation for uniform film thickness still holds if the film thickness is replaced by its local value at the point where the stress is evaluated. This result has been experimentally validated in Part II of this paper.  相似文献   

6.
A laser spallation facility has been developed to measure the strength of planar interfaces between a substrate and a thin coating. This quantity is a central requirement in contemporary thin film and protective coatings technology and its successful measurement should improve the scientific/technological potential for the design of advanced composites, protective coatings of composites that operate in hostile environments, and in joining of dissimilar materials. The technique involves impinging a laser pulse of ultra short duration on the rear surface of the substrate, which is coated by a thin layer of energy absorbing metal such as Sn and Pb. The explosive evaporation of the metallic layer, confined between a fused quartz crystal and the substrate, induces a compressive shock wave, which propagates through the substrate toward the material interface. Upon reflection from the free surface of the coating, the pressure pulse is converted into a tensile wave which, under certain conditions, can lead to spallation at the interface. It is shown by mathematical simulation that atomic bond rupture is the mechanism of separation in this experiment. Since the interaction of laser energy with matter is a complicated, highly non-linear process, our investigations, at first, were based on measurement of the pressure pulse generated by the threshold flux level that leads to spallation, by using a micro-electronics device with a piezo-electric crystal, and on computation of the tensile stress experienced at the material interface, by numerical simulation of the induced stress wave propagation. Several substrate/coating (ceramic/ceramic and ceramic/metal) systems have been investigated such as, 1–15 μm SiC by CVD, 1–4 μm TiC and TiN by PVD coatings on sapphire substrates, as well as 1–2 μm Au, Sn and Ag coatings by sputtering on sapphire, fused quartz and glass substrates. For identically prepared specimens, the measured threshold energy levels are reproducible, thus leading to reproducible bond strength values, while the spall size, as expected, is dependent on the laser pulse energy level. Finally, the bond strength values obtained are in very good agreement with similar data derived by direct experimental techniques based on Laser-Doppler-Interferometry.  相似文献   

7.
纳米压痕法测磁控溅射铝薄膜屈服应力   总被引:1,自引:0,他引:1  
为了在考虑残余应力下测量出磁控溅射铝薄膜的屈服应力,提出了一种实验测量方法,通过曲率测试法和球形压头纳米压痕法测出磁控溅射铝薄膜的屈服应力.建立球形压痕力学模型,并用ANSYS对球形压痕进行力学有限元仿真,利用直流磁控溅射技术在硅基上淀积一层1 μm厚的铝薄膜,首先通过曲率测试法测量膜内等双轴残余应力,再利用最小二乘曲线拟合法从薄膜/基底系统的球形压头纳米压痕实验数据中提取出铝薄膜的屈服应力,测得磁控溅射铝薄膜的屈服应力为371 MPa.该方法也可以用来研究其他材料的薄膜和小体积材料的力学特性.  相似文献   

8.
Film/substrate structures may undergo a localized thermal load, which can induce stresses, deformation and defects. In this paper, we present the solutions of temperature and stresses in a film/substrate structure under a local thermal load on the film surface. Then, the generalized Stoney formula, which connects the curvature of deformation and the stress field is obtained. The present solution takes into account the non-uniformity of the temperature field both in the width and thickness directions of the film. The thermo-mechanical solution is applied to the analysis of the temperature distribution, stresses, and damage of a GaN/sapphire system during the laser lift-off (LLO) process. It is shown that the laser with the Gaussian distribution of energy density causes much smaller tensile stresses at the edge of the heated area in the film than the laser with the uniform distribution of energy density, and thus can avoid damage to the GaN films separated from the substrate.  相似文献   

9.
The measurement of mode-dependent thin film interfacial properties is important in evaluating the quality of the interfaces between thin films and substrates. Previous work has proved that tensile and mixed-mode strength of a thin film/substrate interface can be evaluated using a laser-induced thin film spallation technique. To further examine the application regime of this technique and identify the individual roles of the tensile and shear stress in the resulting interfacial failure, a special sample design is adopted in the current work to realize pure-shear loading at the thin film/substrate interface. Our result demonstrates that for sufficiently high stress amplitude, interfacial failure can be induced solely by the in-plane shear stress and the stress can be quantitatively determined from optical interferometric measurements. Together with the previous tensile and mixed-mode studies, a complete picture of the mode-dependent thin film interfacial strength can now be reliably determined using the laser-induced thin film spallation techniques.  相似文献   

10.
Deposition processes control the properties of thin films; they can also introduce high residual stresses, which can be relieved by delamination and fracture. Tungsten films with high 1–2 GPa compressive residual stresses were sputter deposited on top of thin (below 100 nm) copper and diamond-like carbon (DLC) films. Highly stressed films store large amounts of strain energy. When the strain energy release rate exceeds the films' interfacial toughness, delamination occurs. Compressive residual stresses cause film buckling and debonding, forming open channels. Profiles of the buckling delaminations were used to calculate the films' interfacial toughness and then were compared to the adhesion results obtained from the superlayer indentation test. Tests were conducted in both dry and wet environments and a significant drop in film adhesion, up to 100 times was noticed due to the presence of moisture at the film/substrate interface.  相似文献   

11.
柔性电子中联接电子元器件的互联金属导线多以附着在高分子基底上的薄膜形式存在。由于此类膜基体系在服役过程中需要承受相对较大的变形,如何改进高分子基金属薄膜的延展性能成为制约柔性电子技术发展的关键问题之一。以往的研究通过对高分子基底进行酸碱腐蚀、喷砂等表面糙化处理,虽然可以有效提高膜基结合性能,但却很少考虑基底表面糙化处理对提高膜基体系延展性能的影响。本文首先实验研究了在含糙化表面的聚酰亚胺基底上附着Cu膜的延展性能,结果表明,提高基底表面粗糙度能够显著降低Cu膜在拉伸条件下的裂纹密度。由于膜基体系表面裂纹的扩展与薄膜表面拉伸正应力分布相关,后者将直接影响薄膜的延展性,采用有限元方法模拟计算了基底表面糙化处理后,金属薄膜在拉伸状态下的应力分布。在计算模型中,膜基界面被处理成正弦曲线形式的理想化界面,并考虑了金属薄膜的外表面为平直状和曲线状两种情况。结果显示,曲线型界面可显著改变后一种情况下金属薄膜在拉伸状态下的表面正应力分布,从而达到抑制金属表面裂纹的扩展以及降低裂纹密度的作用。最后,采用内聚力模型模拟膜基界面,研究了在拉伸条件下曲线型界面的损伤分布情况。结果表明,相对于平直界面,曲线型界面不易发生如界面损伤和界面裂纹扩展的破坏,而且振幅波长比越大的曲线型界面越不容易发生破坏。  相似文献   

12.
This paper explores the mechanisms of the residual stress generation in thin film systems with large lattice mismatch strain, aiming to underpin the key mechanism for the observed variation of residual stress with the film thickness. Thermal mismatch, lattice mismatch and interface misfit dislocations caused by the disparity of the material layers were investigated in detail. The study revealed that the thickness-dependence of the residual stresses found in experiments cannot be elucidated by thermal mismatch, lattice mismatch, or their coupled effect. Instead, the interface misfit dislocations play the key role, leading to the variation of residual stresses in the films of thickness ranging from 100 nm to 500 nm. The agreement between the theoretical analysis and experimental results indicates that the effect of misfit dislocation is far-reaching and that the elastic analysis of dislocation, resolved by the finite element method, is sensible in predicting the residual stress distribution. It was quantitatively confirmed that dislocation density has a significant effect on the overall film stresses, but dislocation distribution has a negligible influence. Since the lattice mismatch strain varies with temperature, it was finally confirmed that the critical dislocation density that leads to the measured residual stress variation with film thickness should be determined from the lattice mismatch strain at the deposition temperature.  相似文献   

13.
The experimental data and the results of direct numerical simulation of the flow developed in a constant-cross-section tube in passage of a shock wave through a three-layer gas system are presented. The three-layer systemis formed as a result ofmounting two thin films in the tube and filling the space between them with gases of different densities. The first interface (thin film) makes an angle of 45? with the shock front and the second interface is located in parallel to the front. The shock wave is formed at the left tube end and moves towards the first interface at the Mach number M = 2.4. The results of simulation of the problem are compared with the experimental data.  相似文献   

14.
The influence of intrinsic stress gradient on the mode-I fracture of thin films with various thicknesses fabricated for Microelectromechanical Systems (MEMS) was investigated. The material system employed in this study was hydrogen-free tetrahedral amorphous diamond-like carbon (ta-C). Uniform gauge microscale specimens with thicknesses 0.5, 1, 2.2, and 3 μm, containing mathematically sharp edge pre-cracks were tested under mode-I loading in fixed grip configuration. The effective opening mode fracture toughness, as calculated from boundary force measurements, was 4.25±0.7 MPa√m for 0.5-μm thick specimens, 4.4±0.4 MPa√m for 1-μm specimens, 3.74±0.3 MPa√m for 2.2-μm specimens, and 3.06±0.17 MPa√m for 3-μm specimens. Thus, the apparent fracture toughness decreased with increasing film thickness. Local elastic property measurements showed no substantial change as a function of film thickness, which provided evidence for the stability of the sp2/sp3 carbon binding stoichiometry in films of different thicknesses. Detailed experiments and finite element analysis pointed out that the dependence of the effective fracture toughness on specimen thickness was due to the intrinsic stress gradient developed during fabrication and post-process annealing. This stress gradient is usually unaccounted for in mode-I fracture experiments with thin films. Thicker films, fabricated from multiple thin layers, underwent annealing for extended times, which resulted in a stress gradient across their thickness. This stress gradient caused an out-of-plane curvature upon film release from its substrate and, thus, combined bending and tensile mode-I loading at the crack tip under in-plane forces. Since the bending component cannot be isolated from the applied boundary force measurements, its contribution, becoming important for thick films, remains unaccounted for in the calculation of the critical stress intensity factor, thus resulting in reduced apparent fracture toughness that varies with film thickness and curvature. It was concluded that in the presence of a stress gradient, accounting only for the average intrinsic stresses could lead in an overestimate of the fracture resistance of a brittle film. Under these considerations the material fracture toughness of ta-C, as determined from specimens with negligible curvature, is KIC=4.4±0.4 MPa√m.  相似文献   

15.
The massive cracking of silicon thin film electrodes in lithium ion batteries is associated with the colossal volume changes that occur during lithiation and delithiation cycles. However, the underlying cracking mechanism or even whether fracture initiates during lithiation or delithiation is still unknown. Here, we model the stress generation in amorphous silicon thin films during lithium insertion, fully accounting for the effects of finite strains, plastic flow, and pressure-gradients on the diffusion of lithium. Our finite element analyses demonstrate that the fracture of lithiated silicon films occurs by a sequential cracking mechanism which is distinct from fracture induced by residual tension in conventional thin films. During early-stage lithiation, the expansion of the lithium-silicon subsurface layer bends the film near the edges, and generates a high tensile stress zone at a critical distance away within the lithium-free silicon. Fracture initiates at this high tension zone and creates new film edges, which in turn bend and generate high tensile stresses a further critical distance away. Under repeated lithiation and delithiation cycles, this sequential cracking mechanism creates silicon islands of uniform diameter, which scales with the film thickness. The predicted island sizes, as well as the abrupt mitigation of fracture below a critical film thickness due to the diminishing tensile stress zone, is quantitatively in good agreement with experiments.  相似文献   

16.
TiN薄膜的应力状态对摩擦学性能的影响   总被引:6,自引:0,他引:6  
用X射线衍射仪测定了在52100钢基体上离子束增强沉积TiN膜、等离子体化学气相沉积TiN膜和离子镀TiN膜的应力状态,分析了不同工艺方法制取的TiN薄膜的应力形成的影响因素,比较了3种薄膜在不同载荷和摩擦速度条件下的摩擦学性能,分析了膜-基界面两侧应力状态对膜-基结合力、薄膜的耐磨性能和磨损机理的影响.结果表明:3种TiN/52100钢试样在薄膜内的应力均为压应力,但在界面附近基体一侧的应力状态是随着工艺方法的不同而不同,3种膜的硬度和膜-基结合力都依次下降,而其内应力与膜-基应力的差值则是依次增大,分别为269.0MPa,660.5MPa和1063.3MPa,因而前者显示出最高的膜-基结合力和最佳的摩擦学性能;而后2种膜则显示出依次渐差的膜-基结合力和摩擦学性能  相似文献   

17.
The strain gradient work hardening is important in micro-indentation of bulk metals and thin metallic films, though the indentation of thin films may display very different behavior from that of bulk metals. We use the conventional theory of mechanism-based strain gradient plasticity (CMSG) to study the indentation of a hard tungsten film on soft aluminum substrate, and find good agreement with experiments. The effect of friction stress (intrinsic lattice resistance), which is important in body-center-cubic tungsten, is accounted for. We also extend CMSG to a finite deformation theory since the indentation depth in experiments can be as large as the film thickness. Contrary to indentation of bulk metals or soft metallic films on hard substrate, the micro-indentation hardness of a hard tungsten film on soft aluminum substrate decreases monotonically with the increasing depth of indentation, and it never approaches a constant (macroscopic hardness). It is also shown that the strain gradient effect in the soft aluminum substrate is insignificant, but that in the hard tungsten thin film is important in shallow indentation. The strain gradient effect in tungsten, however, disappears rapidly as the indentation depth increases because the intrinsic material length in tungsten is rather small.  相似文献   

18.
A generalized refined theory including surface effects is developed for functionally graded ultra-thin films with different surface properties. The classical generalized shear deformable theory is adopted to model the film bulk, while the bulk stresses along the surfaces of the bulk substrate are required to satisfy the surface balance equations of the continuum surface elasticity. As a result, the shape function also shows size-dependence on the film thickness. Since the film is non-homogeneous through the thickness, the state space method and approximate laminate model are employed to derive the variation of shape function through the thickness direction. A simply supported thin film in cylindrical bending is considered as an example to illustrate the application of the present theory. By comparing to the Kirchhoff plate theory including surface effects, the necessity of the present theory for FGM thin films is solidly validated. It is established that the present FGM thin films exhibit significant size-dependence when the thickness approaches to micro-scale. As the gradient index changes, the extent of size-dependence varies accordingly.  相似文献   

19.
The linear bifurcation theory is used to investigate the stability of soft thin films bonded to curved substrates. It is found that such a film can spontaneously lose its stability due to van der Waals or electrostatic interaction when its thickness reduces to the order of microns or nanometers. We first present the generic method for analyzing the surface stability of a thin film interacting with the substrate and then discuss several important geometric configurations with either a positive or negative mean curvature. The critical conditions for the onset of spontaneous instability in these representative examples are established analytically. Besides the surface energy and Poisson's ratio of the thin film, the curvature of the substrate is demonstrated to have a significant influence on the wrinkling behavior of the film. The results suggest that one may fabricate nanopatterns or enhance the surface stability of soft thin films on curved solid surfaces by modulating the mechanical properties of the films and/or such geometrical properties as film thickness and substrate curvature. This study can also help to understand various phenomena associated with surface instability.  相似文献   

20.
Thin composite films consisting of a matrix with embedded particles are currently being developed both as hard, wear resistant coatings and as functional surfaces. The effect of stiff particles in the film are studied for systems where the film is under residual tensile stresses. The particles, when they are fully bonded to the matrix, increase the stiffness of the composite film. In cases where the particles debond from the matrix material, the stiffness of the composite film decreases. The conditions under which the debonding process is stable are studied. For systems properly designed, a controlled debonding process of the particles can thus be used to reduce the stress levels in composite film lowering the risk for delamination of the composite film from the substrate as well as the risk of through cracks in the film. The work includes finite element based unit cell calculations of interface debonding between spherical particles and the film, and the release of residual stresses following this. The three dimensional unit cell calculations assume a periodic distribution of particles in the plane parallel to the substrate interface with equi-biaxial tension and periodicity with zero overall stress perpendicular to the substrate interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号