首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen induced crack-tip plastic deformation has been known as the primary mechanism of hydrogen assisted cracking and stress corrosion cracking. It has been systematically shown that the same mechanism of environmentally assisted crack-tip dislocation emission causes hydrogen assisted cracking, stress corrosion cracking, and liquid metal embrittlement cracking.An embrittling chemical species has to reach a crack tip in order to accelerate crack growth. Very close to a sharp crack tip, surface diffusion is shown to be the dominant transport process of embrittling species for stage-II crack growth. The role of surface diffusion in stage II crack growth is analyzed. The constant cracking velocity is proportional to the surface diffusion coefficient of an embrittling species and inversely proportional to a length parameter, , which is related to the transport process upstream.Dislocation emission at a crack tip is driven by crack-tip resolved shear stress. Crack-tip resolved shear stress field is characterized by resolved shear stress intensity factor, KRSS·KRSS is defined, the procedure for its calculation outlined, and its applications to crack-tip dislocation emission and environmentally assisted cracking discussed.  相似文献   

2.
The stresses in the local neighborhood of a crack tip have been used to develop a relation between the isochromatic-fringe orderN, its position parametersr and θ and the stress field expressed in terms of stress intensities,K I ,K II , and a far-field stress σ ox . This relation was programmed and a plotting routine was developed to map isochromatic (σ1 ? σ2) fields in the neighborhood of the crack tip. The stress intensitiesK I andK II and the far-field stress σ ox were varied and isochromatic fields were constructed for each combination. As bothK II and σ ox influence the size, shape and orientation of the isochromatics loops in a systematic manner, the pictorial representation of the isochromatic fields can be used to classify the state of stress (K I ,K II and σ ox ) at the crack tip. Isochromatics which classify six different states of stress have been illustrated and methods used to determineK I ,K II , andσ ox in five of the six states are given.  相似文献   

3.
An edge crack is analyzed to study fretting failure. A flat punch with rounded corners and a half-plane are regarded as an indenter and a substrate, respectively. Plane strain condition is considered. Contact shear traction in the case of partial slip is evaluated numerically. It is assumed that an initial crack is extended to the point of minimum strain energy density in the half-plane from the trailing edge of contact. Dislocation density function method is used to evaluate KI and KII. The variations of KI and KII during crack growth are examined in the case of indentation by a punch with different ratio of the flat region (l) to the punch width (L). Sih's minimum strain energy density theory [1] is also applied to predict the propagation direction of the initial crack. The direction evaluated is similar to that found in the experiment. Stress intensity factor ranges (ΔKI and ΔKII) are examined during cyclic shear on the contact. For the design of contacting bodies, a suggestible geometry of punch for alleviating cracking failure is studied.  相似文献   

4.
The mixed-mode, elastodynamic state of stress in the neighborhood of a constant-velocity crack tip is used to generate numerically unsymmetric isochromatics. Unsymmetry associated with the third-order terms of a mixed-mode stress field, with and without the Mode II singular stress term, is also investigated. In extractingK I from an unsymmetric isochromatic pattern, errors in the Mode I fracture parameters due to the assumed presence ofK II in aK I stress field were found to be significant when data are taken more than 4 mm from the crack tip. Paper was presented at V International Congress on Experimental Mechanics held in Montreal, Quebec, Canada on June 10–15, 1984.  相似文献   

5.
A combined theoretical and experimental study of the problem of crack growth in a plate subjected to unsymmetrical three-point bending was undertaken. The opening-modeK I and sliding-modeK II stress-intensity factors describing the local stress field around the crack tip were determined by a finite-element computer program. The crack growth was analyzed by the maximum circumferential stress and the minimum strain-energy density criteria. The critical loads for crack growth and the crack trajectories were determined both by theory and experiment. The experimental results corroborated the theoretical predictions.  相似文献   

6.
On the basis of existing photoelastic methods for the determination ofK I andK II, this paper presents an experimental method for determiningK III with photoelastic data, and a photoelastic method for comprehensively determiningK I,K II andK III under the complex stress condition. A frozen three-dimensional photoelastic model is first used to determineK I andK II from the slice perpendicular to the flaw edge. Then, from that slice, a sub-slice is taken to determine the factorK III. This method is examined by comparison with two test models.  相似文献   

7.
轮轨滚动接触下,钢轨表面会产生典型的鱼钩形剥离掉块,其形成机理目前暂未明确.为了探究轮轨滚动接触下钢轨表面裂纹扩展机理,基于最大周向拉应力准则,建立轮轨滚动接触疲劳计算模型,提出裂尖扩展路径预测方法,并对不同初始角度裂纹的扩展路径进行预测.结果表明,钢轨表面微裂纹为Ⅰ-Ⅱ复合型裂纹,随着裂纹长度增加,KⅠ先增加后减小,...  相似文献   

8.
The purpose of this study is to investigate the accuracy of the least squares method for finding the in-plane stress intensity factorsK I andK II using thermoelastic data from isotropic materials. To fully understand the idealized condition ofK I andK II calculated from thermoelastic experiments, the total stress field calculated from finite element analysis is used to take the place of data obtained from real thermoelastic experiments. In the finite element analysis, theJ-integral is also calculated to compare with (K I 2 +K II 2 )/E evaluated by the least squares method. The stress fields near the crack tip are dominated by the two stress intensity factors; however, the edge effect will cause inaccuracy of the thermoelastic data near the crack tip. Furthermore, the scan area of thermoelastic experiments cannot be too small. Therefore, we suggest that three or four terms of stress function be included in the least squares method for evaluating stress intensity factors via the thermoelastic technique. In the idealized condition, the error can be smaller than 3 percent from our numerical simulations. If only ther –1/2 term (K I andK II ) is included in the least squares method, even in the idealized case the error can be up to 20 percent.  相似文献   

9.
A FEM analysis for studying mixed-mode fracture problem of chopped strand mat glass fibre reinforced polyester laminate is presented. The analysis is formulated on the basis of 8-node quadrilateral isoparametric element. The collapsed triangular quarter-point singular elements were used for calculating stress intensity factors KΙ and K.The crack propagation process was computed by implementing constraint release technique. Three different approaches to the solution of stress intensity factors KΙ and K were compared. The effect of constraint condition imposed upon the displacement of the three collapsed nodes of the crack tip elements on the KΙ and K results was evaluated. The mixed-mode critical stress intensity factors KΙC and KⅡC were estimated for CSM-GRP through the consideration of KΙ and K calculated and the measured failure load and critical crack length in the experiment.  相似文献   

10.
The paper gives explicit expressions of the elastic T-stress components T I, T II, and T III for an elliptic crack in an unbounded body under uniform pressure and bending and expressions of all the T-stress components for parabolic and tunnel cracks under uniform loading. These formulas are derived by analyzing the asymptotic behavior of the stress components near the crack front using special harmonic functions. The dependence of the T-stresses on Poisson’s ratio, semiaxes and parametric angle of the elliptic crack is studied. The expressions of T I, T II, and T III for a penny-shaped crack under arbitrary uniform pressure and bending follow as a special case from the respective expressions for an elliptic crack __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 8, pp. 57–70, August 2007.  相似文献   

11.
The behaviour of a bi-piezoelectric ceramic layer with a centre interfacial crack subjected to anti-plane shear and in-plane electric loading has been studied. The dislocation density functions and the Fourier integral transform method have been employed to eliminate the problem of singular integral equations. The normalized energy release rate, stress and electrical displacement intensity factors, G/G0,KIII/KIII0 and KD/KD0, respectively, were determined for different geometric and property parameters by use of two different crack surface electric boundary conditions, i.e. impermeable and permeable. It has been shown that the effects of the thickness and material constants of the piezoelectric layer on all the three parameters, i.e. G/G0,KIII/KIII0 and KD/KD0 were significant.  相似文献   

12.
An investigation is presented on the suitability and accuracy of a thermoelastic technique for the analysis of fatigue cracks. The stress intensity factor ranges ΔK I and ΔK II are determined from thermoelastic data recorded from around the tip of a sharp slot in a steel specimen under biaxial load, in order to assess the accuracy of the technique. ΔK I and ΔK II are determined to within 4% and 9% of a theoretical prediction, respectively. The results from a similar test on a fatigue crack under biaxial load are also presented. These show that thermoelastic stress analysis is a rapid and accurate way of analyzing mixed-mode fatigue cracks. A discussion is given on the potential of thermoelastic stress analysis of propagating cracks.  相似文献   

13.
A numerical/analytical approach is proposed to determine the stress intensity factors KI, KII, and KIII of a 3D internal crack. The main point of this approach is the meshing technique that can model very sharp crack fronts. The meshing technique is based on an elliptical coordinate transformation that starts from a circular crack. It allows the obtainment of a curved crack front with elements normal to the crack front. Remarkable accuracy can be obtained for elliptical crack fronts with axes ratio smaller that 0.01. Accuracy demonstration is provided for cylindrical element with an inclined internal crack subjected to uni-axial tension. This case corresponds to crack propagation for all three modes of loading, the solution of which can checked with references’ results.  相似文献   

14.
In this paper, the characteristic properties ofv (y-direction displacement) field surrounding the tip of a mixed mode crack are studied. These properties can be used to evaluate the rigid body rotation of the crack tip, theK I SIF and the ratio ofK II SIF toK I.The authors employ a film to record the displacement information based on the technique of moire interferometry with sticking films. By using the data taken from the moire pattern and treating them with the damping least square method, all of the parameters of the crack can be obtained accurately.  相似文献   

15.
A mixed-mode (I + II) crack model with a plastic strip on its continuation under plane strain is proposed. The stress components within the strip are determined from the yield conditions, stress limitation, and relationship between the normal stress components defined via the principal stress state. The crack parameters are analyzed for the Mises yield condition. In the quasibrittle case, the governing system of equations includes stress intensity factors K I, K II, and T-stresses  相似文献   

16.
Finite element analyses were conducted in order to evaluate the mode I and mode II stress intensity factors for inclined edge cracks under cyclic contact load under rolling and rolling–sliding condition. The SIF range depends on crack orientation, crack length to Hertzian contact zone half-width ratio, friction between the crack faces and friction on the contact surface. The results were combined in two compact functions that determine the ΔKI and ΔKII values. The crack propagation mode and direction were investigated using both the maximum stress criterion and the minimum strain energy density criterion. The results are displayed in graph form, which allows a fast evaluation of the crack growth condition.  相似文献   

17.
Stress intensity factors (SIFs) were obtained for an oblique crack under normal and shear traction and remote extension loads. The oblique crack was modeled as the pseudodislocation. The stress field due to tractions was solved by the Flamant solution. The SIR of Mode I and Mode II (KIand KII) were then obtained. Finite element analysis was performed with ABAQUS and compared with the analytical solutions. The analytical solutions were in good agreement with the results of FEM. From investigating SIFs and their ranges, the following results were obtained. The growth rate of an oblique edge crack decreased due to the reduction in the SIF ranges. The crack driving force depended on the obliquity, the normal traction and the ratio of crack to traction length. The peak value of shear traction was found as a key parameter to accelerate the crack growth.  相似文献   

18.
The mixed mode, near-field state of stresses sourrounding a crack propagating at constant velocity is used to derive a relation between the dynamic stress-intensity factorsK I,K II, the remote stress component σ ox and the dynamic isochromatics. This relation, together with an over-deterministic least-square method, form the basis of a datareduction procedure for extracting dynamic,K I,K II and σ ox from the recorded dynamic photoelastic pattern surrounding a running crack. The overdeterministic least-square method is also used to fit static isochromatics to the numerically generated dynamic isochromatics. The resultant staticK I,K II and σ ox are compared with the corresponding dynamic values and estimats of errors involved in using static analysis to process dynamic isochromatic data are obtained. The data-reduction procedure is then used to evaluate the branching stress-intensity factor associated with crack branching and the mixed-mode stress-intensity factors associated with crack curving.  相似文献   

19.
Quasi-static mixed mode crack initiation and growth in functionally graded materials (FGMs) was studied through fracture experiments on polymer-based FGMs manufactured by selective ultraviolet irradiation poly(ethylene carbon monoxide)—a photo-sensitive copolymer that becomes more brittle and stiffer under ultraviolet irradiation. The objective of the study was to determine whether crack kinking criteria for homogeneous materials, e.g., maximum hoop stress criterion, also hold for FGMs. Single edge notched tension specimens with different spatial variations of Young's modulus, failure stress and failure strain, were tested. Near tip mode mixity was introduced either by inclining the crack to the remote loading direction, as in the case of homogeneous materials, or to the direction of material gradient, or both. A full-field digital image correlation technique was used to measure in real-time the displacement field around the crack tip while it propagated through the graded material, and to extract the fracture parameters of stress intensity factor K I and K II , and the T-stress. It was found that the nonsingular T-stress term in the asymptotic expansion for stresses plays a very important role in accurately measuring fracture parameters. It was also found that the maximum tangential stress criterion can be applied to the case of FGMs to predict crack kinking provided that the effect of the T-stress is accounted for and the process zone size is small compared to the intrinsic material gradient length scale. However, for accurate crack path prediction at a length scale comparable to the material gradient, detailed material property information is required. In general, the crack will propagate towards a region that exhibits less fracture toughness, but, unlike the case of homogeneous materials, along a path where K II is not necessarily equal to zero.  相似文献   

20.
A closed-form solution is obtained for the problem of a mode-III interfacial edge crack between two bonded semi-infinite dissimilar elastic strips. A general out-of-plane displacement potential for the crack interacting with a screw dislocation or a line force is constructed using conformal mapping technique and existing dislocation solutions. Based on this displacement potential, the stress intensity factor (SIF, KIII) and the energy release rate (ERR, GIII) for the interfacial edge crack are obtained explicitly. It is shown that, in the limiting special cases, the obtained results coincide with the results available in the literature. The present solution can be used as the Green’s function to analyze interfacial edge cracks subjected to arbitrary anti-plane loadings. As an example, a formula is derived correcting the beam theory used in evaluation of SIF (KIII) and ERR (GIII) of bimaterials in the double cantilever beam (DCB) test configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号