首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elastic softening materials are brittle materials such that crack extension is associated with a softening zone behind the crack tip, with the material elements within this zone exerting a restraining effect on the crack tip. Crack extension is sometimes characterised in terms of the stress intensity KF, due to the applied loadings, at the front of the softening zone, i.e. the actual crack tip. This paper is concerned with the determination of the maximum load KF value for a general positive geometrical configuration, for the case where the softening zone size is small compared with a solid's characteristic dimension. The resulting expression for KF is compared with the maximum load stress intensity value KT measured with regard to the initial crack position, i.e. the trailing edge of the softening zone.  相似文献   

2.
Using the results of crack surface displacement field in Green-Sneddon’s solution[1] and coordinate transformation, this paper has derived an expression K1(x1,z1,a) for SIF at any point and at any orientation on the border of elliptical flat crack inside infinite solid under uniform tension. As a complement of Irwin’s work[3], it is shown that for any pointed point on the elliptical border the SIF defined on normal plane takes the maximum value. And it should be pointed out that in some works some idea concerning Irvin’s contents is open to question. An expression K1 in terms of polar angle which is more intuitional than centrifugal angle is proposed for SIF at any point on the elliptical border.  相似文献   

3.
Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio ν at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle ϕ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of ϕ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2≤a/c≤1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded center-elliptical crack front field, and a two-parameter K-Tz principle is proposed. The project supported by the National Natural Science Foundation of China (50275073) The English text was polished by Keren Wang.  相似文献   

4.
The purpose of this paper is to extend the embedded fine-grid method to three-dimensional stress-intensity-factor analysis. The embedded crossed fine grids give two components of displacement and are capable of calculatingK I without the assumption of the plane-strain condition along a crack or a notch front. It is not valid to assume the plane-strain condition to calculateK I in the vicinity of a free surface, whereK I is influenced by a free surface (plane-stress condition). In this paper, a dyeing and bleaching process is considered to reproduce the crossed fine grids on an epoxy plate. By using these grids as embedded grids, the distributions ofK I along notch fronts in SEN specimens with various different thicknesses and side grooves are studied. The influences of a free surface and the side-groove effects on the distribution ofK I are discussed. Paper was presented at 1982 SESA/JSME Spring Meeting held in Oahu and Maui, HI on May 24–29.  相似文献   

5.
Using the technique of Dimensional Analysis the phenomenon of crack closure is modelled using the concept of a contact stress intensity factor Kc. For constant amplitude loading, a simple expression, Kcmax = g(R) ΔK, is obtained without making idealized assumptions concerning crack tip behaviour. Further, by assuming that crack closure arises from the interaction of residual plasticity in the wake of the crack and crack tip compressive stresses, the function g(R) is shown to be constant for non-workhardening materials. This implies that any dependency of Kcmax on R must be attributed to the workhardening characteristic of the material. With Kc known, an “effective” stress intensity factor Ke may be calculated and incorporated into a crack growth law of the form da/dn = f(ΔKe). From analysis, it can be deduced that for a workhardening material, Kcmax will decrease as R increases and the effective stress intensity factor will increase. This means that the fatigue crack propagation rate will increase with R, in accordance with experimental observations.  相似文献   

6.
The character of the local stresses and displacements are determined for a through crack with finite radius of curvature in a finite thickness plate. Numerical results obtained from the boundary element method show that the solutions are sufficiently accurate for /a ≤ 0.03 and 0.03 ≤ /a ≤ 0.1, where and a represent, respectively, the crack front radius of curvature and crack dimension such that a is the width of a through thickness crack and the depth of a part-through crack. For /a ≤ 0.1, the asymptotic singular stress field dominates such that the Mode I stress intensity factor K1 can be evaluated. As the crack border radius of curvature is increased for /a ≥ 0.1, the non-singular terms become significant such that KI would no longer dominate. Other failure criteria would have to be invoked to address fracture initiation.  相似文献   

7.
A full field solution, based on small deformation, three-dimensional elastic–plastic finite element analysis of the centrally cracked thin disk under mode I loading has been performed. The solution for the stresses under small-scale yielding and lo!cally fully plastic state has been compared with the HRR plane stress solution. At the outside of the 3D zone, within a distance of rσo/J=18, HRR dominance is maintained in the presence of a significant amount of compressive stress along the crack flanks. Ahead of this region, the HRR field overestimate the stresses. These results demonstrate a completely reversed state of stress in the near crack front compared to that in the plane strain case. The combined effect of geometry and finite thickness of the specimen on elastic–plastic crack tip stress field has been explored. To the best of our knowledge, such an attempt in the published literature has not been made yet. For the qualitative assessment of the results some of the field parameters have been compared to the available experimental results of K, gives a fair estimate of the crack opening stress near the crack front at a distance of order 10−2 in. On the basis of this analysis, the Linear Elastic Fracture Mechanics approach has been adopted in analyzing the fatigue crack extension experiments performed in the disk (Part II).  相似文献   

8.
Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The resolved shear stress, which drives dislocation in a crystal, is strongly orientation dependent, and therefore, the cyclic plastic deformation of the shear decohesion process is highly anisotropic.The crack planes are often inclined to the loading axis both in the inplane orientation and in the thickness direction. This inclination induces all three modes of the crack tip stress field, KI, KII, and KIII.Fatigue crack growth in large-grain Al 7029 aluminum alloy was studied. The crack tip stress fields of the test specimens are calculated with the finite element method. The values of KI, KII, and KIII are evaluated. The orientation of the crystal at a crack tip was determined with the Laue X-ray method. The crystal orientation and the calculated crack tip stress fields are used to compute the resolved shear stress intensity of each of the twelve slip systems of the crystal at the crack tip. The resolved shear stress field of a slip system is linearly proportional to the resolved shear stress intensity coefficient, RSSIC.The values of RSSIC thus evaluated are used to analyze the orientations of the crack plane and to correlate with the shear fatigue crack growth rate.  相似文献   

9.
Global and boundarycollocation solutions forK I , CMOD, and the full-field stress patterns of a single-edge notched tension specimen were compared to determine the accuracy of each technique and the utility of each for determining solutions for the short and the deep crack case. It was demonstrated that inclusion of internal stress conditions in the collocation, i.e., performing a global rather than a boundary collocation solution, expands the range of crack lengths over which accurate results can be obtained. In particular, the global collocation approach provided accurate results for crack lengths between 10 percent and 80 percent of the specimen width for a typical specimen geometry. Comparable accuracy for boundary collocation was only found for crack lengths between 20 percent and 60 percent of the specimen width.  相似文献   

10.
Crack fronts play a fundamental role in engineering models for fracture: they are the location of both crack growth and the energy dissipation due to growth. However, there has not been a rigorous mathematical definition of crack front, nor rigorous mathematical analysis predicting fracture paths using these fronts as the location of growth and dissipation. Here, we give a natural weak definition of crack front and front speed, and consider models of crack growth in which the energy dissipation is a function of the front speed, that is, the dissipation rate at time t is of the form
where F(t) is the front at time t and v is the front speed. We show how this dissipation can be used within existing models of quasi-static fracture, as well as in the new dissipation functionals of Mielke–Ortiz. An example of a constrained problem for which there is existence is shown, but in general, if there are no constraints or other energy penalties, this dissipation must be relaxed. We prove a general relaxation formula that gives the surprising result that the effective dissipation is always rate-independent.  相似文献   

11.
A crack with an electric displacement saturation zone in an electrostrictive material under purely electric loading is analyzed. A strip saturation model is here employed to investigate the effect of the electrical polarization saturation on electric fields and elastic fields. A closed form solution of electric fields and elastic fields for the crack with the strip saturation zone is obtained by using the complex function theory. It is found that the K I -dominant region is very small compared to the strip saturation zone. The generalized Dugdale zone model is also employed in order to investigate the effect of the saturation zone shape on the stress intensity factor. Using the body force analogy, the stress intensity factor for the asymptotic problem of a crack with an elliptical saturation zone is evaluated numerically.  相似文献   

12.
In this paper, the characteristic properties ofv (y-direction displacement) field surrounding the tip of a mixed mode crack are studied. These properties can be used to evaluate the rigid body rotation of the crack tip, theK I SIF and the ratio ofK II SIF toK I.The authors employ a film to record the displacement information based on the technique of moire interferometry with sticking films. By using the data taken from the moire pattern and treating them with the damping least square method, all of the parameters of the crack can be obtained accurately.  相似文献   

13.
A novel impact three-point bend test method has been developed for determining the dynamic fracture-initiation toughness,K Id, over the range of loading rates . The split-Hopkinson pressure-bar technique is used to measure dynamic loads applied to a bend specimen with a fatigue precrack. The stress-intensity-factor histories for the bend specimen are evaluated by means of a dynamic finite-element technique and the standard formula (ASTM E 399-83) based on the measured dynamic loads. The time of crack initiation is determined using a strain gage mounted near a crack tip. The results for 7075-T6 aluminum alloy and Ti−6A1−2Sn−4Zr−6Mo alloy indicate that the reliableK Id data can only be obtained by evaluation procedures which take the inertial effects into account. It is shown that the novel impact bend test method in conjunction with dynamic finite-element analysis provides an effective means of characterizing the dynamic fracture-toughness parameterK Id.  相似文献   

14.
Quasi-static mixed mode crack initiation and growth in functionally graded materials (FGMs) was studied through fracture experiments on polymer-based FGMs manufactured by selective ultraviolet irradiation poly(ethylene carbon monoxide)—a photo-sensitive copolymer that becomes more brittle and stiffer under ultraviolet irradiation. The objective of the study was to determine whether crack kinking criteria for homogeneous materials, e.g., maximum hoop stress criterion, also hold for FGMs. Single edge notched tension specimens with different spatial variations of Young's modulus, failure stress and failure strain, were tested. Near tip mode mixity was introduced either by inclining the crack to the remote loading direction, as in the case of homogeneous materials, or to the direction of material gradient, or both. A full-field digital image correlation technique was used to measure in real-time the displacement field around the crack tip while it propagated through the graded material, and to extract the fracture parameters of stress intensity factor K I and K II , and the T-stress. It was found that the nonsingular T-stress term in the asymptotic expansion for stresses plays a very important role in accurately measuring fracture parameters. It was also found that the maximum tangential stress criterion can be applied to the case of FGMs to predict crack kinking provided that the effect of the T-stress is accounted for and the process zone size is small compared to the intrinsic material gradient length scale. However, for accurate crack path prediction at a length scale comparable to the material gradient, detailed material property information is required. In general, the crack will propagate towards a region that exhibits less fracture toughness, but, unlike the case of homogeneous materials, along a path where K II is not necessarily equal to zero.  相似文献   

15.
This paper reviews the double-torsion (DT) test as an experimental technique for the measurement of fracture toughness and slow-crack-growth behavior in brittle materials based on the authors' experiences and an evaluation of current literature. The DT technique has numerous advantages due primarily to the fact that the stress intensity is independent of crack length, at least for the central half of the specimen. Although the technique was first proposed about 20 years ago, and has been used extensively since then, there are a number of important unresolved questions concerning the methodology. To date there has been no standardization of test procedure or specimen geometry. A review of specimen geometries in use indicates that the proportions that are most commonly employed (based on the literature and experience) are width:W, length: 3W, thickness:W/6–W/15. Grooves on both the top and the bottom surfaces have been used to guide the crack, however it has been found that ungrooved, but very accurately aligned, specimens give the best results. Theoretical thickness-correction factors which account for both relatively thick specimens (with respect to width) and the effect of the size of the loading points, have been considered. The effect of crack-front profile on measured values of crack velocity and stress intensity is contentious. Althogh the stress intensity,K, varies along the crack front, the front merely translates axially. For the presentation of crackvelocity stress-intensity (V-K) data, the consensus seems to be that the only rational velocity to use is that based on the crack's intersection with the tensile surface. Despite some of the shortcomings mentioned above, the DT technique is widely accepted and gaining in popularity. It is particularly useful under cyclic fatigue conditions for investigating the effect of a change in a single parameter on crack-growth rate, using the very effective and elegant ‘changeover’ method.  相似文献   

16.
The fatigue crack growth characteristics of CrlMo steel have been investigated at 861 K over the R-ratio range 0.1–0.7 utilising a dwell time of 10 min. at maximum load. All tests were conducted under load control in a laboratory air environment. It was established that the R-ratio significantly affected the fatigue crack extension behaviour inasmuch that with increasing R-ratio, the critical ΔK level for the onset of creep fatigue interactive growth, ΔKIG, decreased from 20 to 7 MPa√m and the threshold stress intensity, ΔKth, decreased from 9 to about 3 MPa√m. At intermediate ΔK levels, i.e. between ΔKth and ΔKIG, the fatigue crack extension rates, for all R-ratio values, resided on or slightly below the CTOD line, which represents the upper bound for contrnuum controlled fatigue crack growth. Creep fatigue interactive growth was typified by crack extension rates that reside above the CTOD line with a ΔKIG dependence; the attainment of some critical creep condition or crack linkage condition which causes the abrupt change in crack extension behaviour at ΔKIG; and crack extension occurs almost exclusively in an intergranular manner. The R-ratio and ΔKIG followed a linear relation. A literature review concerning the effect of temperature on the threshold fatigue crack growth characteristics of low alloy ferritic steels demonstrated powerful effects of temperature; the magnitude of these effects, however, were dependent upon the testing temperature regime and R-ratio level. The effect of R-ratio on ΔKth was greatest at temperatures >400°C, significant at ambient temperatures and least in the temperature range 90°C to <300°C. The relationship between temperature and ΔKth, at a given R-ratio, exhibited a through and a minimum ΔKth value was observed in the temperature range 200–250°C. The magnitude of the temperature effects on ΔKth decreased with increasing R-ratio. Such effects of temperature and R-ratio on ΔKth was reasonably explained in terms of crack closure effects. Finally, the present elevated temperature fatigue crack growth data exhibited massive crack extension enhancement values when compared to ambient near-threshold fatigue crack growth data for CrlMo steel. Such large enhancement values were the combined effects of temperature (environment) and frequency.  相似文献   

17.
Two parameters, Kmax* and δKth*, are presented to describe fatigue threshold behaviour and damage under any load ratio without invoking crack closure. Modelled are two fatigue thresholds that are coherently related to fatigue limit δσFL; they predict the fundamental threshold curves for aluminium alloys. By using a continuous configuration of dislocations in pile-up, fatigue limit behaviour is simulated as pile-up of dislocations against grain boundaries. A fatigue limit is determined in terms of a critical condition at which a fictitious microcrack associated with the pile-up corresponds to the onset of propagation. These two fatigue thresholds are attainable as the local stresses at the crack front approaching the fatigue limit. Microstructure is incorporated in the model to account for the effect on threshold behaviour. As a result, two fatigue threshold criteria are required. Quantitative assessment of the two criteria requires only knowledge of the conventional material properties in conjunction with microstructure. The micromechanical modelling exhibits a strong dependence of fatigue thresholds upon local microstructure.  相似文献   

18.
The fatigue crack initiation and propagation in the pure aluminum single crystals with different orientations are investigated. Acoustic Emission (AE) technique is used to monitor the fatigue crack initiation and propagation data. The results show that the acoustic emission technique could be used for detecting fatigue crack initiation and propagation. The total counts of AE are plotted as a function of the number of fatigue cycles, and change in slope of the curve corresponded to the initiation of the fatigue crack. The fatigue crack initiation and propagation are related to the specimen crystalline orientation. Specifically, they depend on the ratio K of the Schmid factor of the secondary slip system, to that of the primary one. The greater the ratio K, the easier the fatigue crack initiates and the faster the fatigue crack propagates. When the ratio K is equal or close to one, the fatigue crack grows either along a cleavage plane which intersects both the primary plane and the secondary one or along the primary slip plane and the secondary one. Growth along alternating planes can also occur giving rise to a zigzag path. When the ratio K is much less than one, the fatigue crack grows along the primary slip plane only. The results are explained with a model for the faceted mode of fatigue crack growth.  相似文献   

19.
A closed-form solution is obtained for the problem of a mode-III interfacial edge crack between two bonded semi-infinite dissimilar elastic strips. A general out-of-plane displacement potential for the crack interacting with a screw dislocation or a line force is constructed using conformal mapping technique and existing dislocation solutions. Based on this displacement potential, the stress intensity factor (SIF, KIII) and the energy release rate (ERR, GIII) for the interfacial edge crack are obtained explicitly. It is shown that, in the limiting special cases, the obtained results coincide with the results available in the literature. The present solution can be used as the Green’s function to analyze interfacial edge cracks subjected to arbitrary anti-plane loadings. As an example, a formula is derived correcting the beam theory used in evaluation of SIF (KIII) and ERR (GIII) of bimaterials in the double cantilever beam (DCB) test configuration.  相似文献   

20.
The investigation detailed in this paper involves the initial design and development of a specimen geometry, designated as a BN(T) specimen, that is suitable for the combined determination of: (a) the fatigue crack initiation; and (b) the fatigue crack propagation, characteristics of materials. The experimental procedure developed during the course of this investigation is applied to a Ti---6Al-4V titanium alloy. This crack initiation and propagation test involves the use of the BN(T) compact-tension specimen with a polished notch root that facilitates an in-situ replication technique for the detection of crack initiation, and a modification of the ASTM-E647 Standard for crack growth data acquisition. The stress intensity factors, KI, associated with the BN(T) specimen are established in this paper by means of a numerical finite element investigation. The use of this unique specimen for fatigue testing gives very satisfactory results and its extended use is expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号