首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 423 毫秒
1.
For a crack subjected to combined mode I and III loading the influence of a T-stress is analyzed, with focus on crack growth. The solid is a ductile metal modelled as elastic–plastic, and the fracture process is represented in terms of a cohesive zone model. The analyzes are carried out for conditions of small scale yielding, with the elastic solution applied as boundary conditions on the outer edge of the region analyzed. For several combinations of the stress intensity factors KI and KIII and the T-stress crack growth resistance curves are calculated numerically in order to determine the fracture toughness. In all situations it is found that a negative T-stress adds to the fracture toughness, whereas a positive T-stress has rather little effect. For given values of KI and T the minimum fracture toughness corresponds to KIII = 0.  相似文献   

2.
Quasi-static mixed mode crack initiation and growth in functionally graded materials (FGMs) was studied through fracture experiments on polymer-based FGMs manufactured by selective ultraviolet irradiation poly(ethylene carbon monoxide)—a photo-sensitive copolymer that becomes more brittle and stiffer under ultraviolet irradiation. The objective of the study was to determine whether crack kinking criteria for homogeneous materials, e.g., maximum hoop stress criterion, also hold for FGMs. Single edge notched tension specimens with different spatial variations of Young's modulus, failure stress and failure strain, were tested. Near tip mode mixity was introduced either by inclining the crack to the remote loading direction, as in the case of homogeneous materials, or to the direction of material gradient, or both. A full-field digital image correlation technique was used to measure in real-time the displacement field around the crack tip while it propagated through the graded material, and to extract the fracture parameters of stress intensity factor K I and K II , and the T-stress. It was found that the nonsingular T-stress term in the asymptotic expansion for stresses plays a very important role in accurately measuring fracture parameters. It was also found that the maximum tangential stress criterion can be applied to the case of FGMs to predict crack kinking provided that the effect of the T-stress is accounted for and the process zone size is small compared to the intrinsic material gradient length scale. However, for accurate crack path prediction at a length scale comparable to the material gradient, detailed material property information is required. In general, the crack will propagate towards a region that exhibits less fracture toughness, but, unlike the case of homogeneous materials, along a path where K II is not necessarily equal to zero.  相似文献   

3.
A novel experimental technique for measuring crack tipT-stress, and hence in-plane crack tip constraint, in elastic materials has been developed. The method exploits optimal positioning of stacked strain gage rosette near a mode I crack tip such that the influence of dominant singular strains is negated in order to determineT-stress accurately. The method is demonstrated for quasi-static and low-velocity impact loading conditions and two values of crack length to plate width ratios (a/W). By coupling this new method with the Dally-Sanford single strain gage method for measuring the mode I stress intensity factorK I , the crack tip biaxiality parameter is also measured experimentally. Complementary small strain, static and dynamic finite element simulations are carried out under plane stress conditions. Time histories ofK I andT-stress are computed by regression analysis of the displacement and stress fields, respectively. The experimental results are in good agreement with those obtained from numerical simulations. Preliminary data for critical values ofK I and β for dynamic experiments involving epoxy specimens are reported. Dynamic crack initiation toughness shows an increasing trend as β becomes more negative at higher impact velocities.  相似文献   

4.
T-stress as an important parameter characterizing the stress field around a cracked tip has attracted much attention. This paper concerns the T-stress near a cracked tip in a magnetoelectroelastic solid. By applying the Fourier transform, we solve the associated mixed boundary-value problem. Adopting crack-faces electromagnetic boundary conditions nonlinearly dependent on the crack opening displacement, coupled dual integral equations are derived. Then, the closed-form solution for the T-stress is obtained. A comparison of the T stresses for a cracked magnetoelectroelastic solid and for a cracked purely elastic material is made. Obtained results reveal that in addition to applied mechanical loading, the T-stress is dependent on electric and magnetic loadings for a vacuum crack.  相似文献   

5.
A mixed-mode (I + II) crack model with a plastic strip on its continuation under plane strain is proposed. The stress components within the strip are determined from the yield conditions, stress limitation, and relationship between the normal stress components defined via the principal stress state. The crack parameters are analyzed for the Mises yield condition. In the quasibrittle case, the governing system of equations includes stress intensity factors K I, K II, and T-stresses  相似文献   

6.
Green’s function for the T-stress near a crack tip is addressed with an analytic function method for a semi-infinite crack lying in an elastical, isotropic, and infinite plate. The cracked plate is loaded by a single inclined concentrated force at an interior point. The complex potentials are obtained based on a superposition principle, which provide the solutions to the plane problems of elasticity. The regular parts of the potentials are extracted in an asymptotic analysis. Based on the regular parts, Gre...  相似文献   

7.
In this paper, the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics. The initial curve and caustic equations were derived under the mixed-mode dynamic condition. A multi-point measurement method for determining the dynamic stress intensity factors,K I d , andK II d , and the position of the crack tip was developed. Several other methods were adopted to check this method, and showed that it has a good precision. Finally, the dynamic propagating process of a mixed-mode crack in the three-point bending beam specimen was investigated with our method.  相似文献   

8.
A numerical/analytical approach is proposed to determine the stress intensity factors KI, KII, and KIII of a 3D internal crack. The main point of this approach is the meshing technique that can model very sharp crack fronts. The meshing technique is based on an elliptical coordinate transformation that starts from a circular crack. It allows the obtainment of a curved crack front with elements normal to the crack front. Remarkable accuracy can be obtained for elliptical crack fronts with axes ratio smaller that 0.01. Accuracy demonstration is provided for cylindrical element with an inclined internal crack subjected to uni-axial tension. This case corresponds to crack propagation for all three modes of loading, the solution of which can checked with references’ results.  相似文献   

9.
On the basis of existing photoelastic methods for the determination ofK I andK II, this paper presents an experimental method for determiningK III with photoelastic data, and a photoelastic method for comprehensively determiningK I,K II andK III under the complex stress condition. A frozen three-dimensional photoelastic model is first used to determineK I andK II from the slice perpendicular to the flaw edge. Then, from that slice, a sub-slice is taken to determine the factorK III. This method is examined by comparison with two test models.  相似文献   

10.
Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The resolved shear stress, which drives dislocation in a crystal, is strongly orientation dependent, and therefore, the cyclic plastic deformation of the shear decohesion process is highly anisotropic.The crack planes are often inclined to the loading axis both in the inplane orientation and in the thickness direction. This inclination induces all three modes of the crack tip stress field, KI, KII, and KIII.Fatigue crack growth in large-grain Al 7029 aluminum alloy was studied. The crack tip stress fields of the test specimens are calculated with the finite element method. The values of KI, KII, and KIII are evaluated. The orientation of the crystal at a crack tip was determined with the Laue X-ray method. The crystal orientation and the calculated crack tip stress fields are used to compute the resolved shear stress intensity of each of the twelve slip systems of the crystal at the crack tip. The resolved shear stress field of a slip system is linearly proportional to the resolved shear stress intensity coefficient, RSSIC.The values of RSSIC thus evaluated are used to analyze the orientations of the crack plane and to correlate with the shear fatigue crack growth rate.  相似文献   

11.
A closed-form solution has been developed to predict the effect of T-stress on the crack–inclusion interaction. As validated by several numerical examples, the approximate solution has satisfactory accuracy for different inclusion shapes and modulus ratios between inclusion and matrix under different T-stress levels. Thus the role of T-stress in crack–inclusion interaction can be predicted quantitatively.  相似文献   

12.
Crack linkup: An experimental analysis   总被引:1,自引:0,他引:1  
TheT ɛ * integral was used to assess stable crack growth and crack linkup in 0.8 mm thick 2024-T3 aluminum tension specimens with multiple site damage (MSD) under monotonic and cyclic loads. TheT ɛ * values were obtained directly from the recorded moiré fringes on the fracture specimens with and without MSD. TheT ɛ * resistance curves of these fracture specimens of different geometries were in excellent agreement with each other. The results suggest thatT ɛ * is a material parameter which can be used to characterize crack growth and linkup in the absence of large overloading.T ɛ * based crack growth and net-section-yield based crack linkup criteria for MSD specimens are proposed. The crack tip opening angle (CTOA) criterion can also be used to correlate crack growth larger than 2 mm.  相似文献   

13.
T-stress expressions are provided for three-point bending (TPB) beams and compact tension (CT) specimens and then its influence on mode I fracture toughness of concrete is investigated. The study shows that T-stress is dependent on the specimen's geometry and the material's property as well, and for TPB and CT specimens of regular size, T-stress is so small that its consequences can be neglected. The study also indicates that concrete specimen size should be carefully chosen to make sure the existence of K-dominance ahead of the crack tip, thus fracture toughness extracted from these specimen configurations can be reliable.  相似文献   

14.
The Dugdale crack model is generalized to the case of plane strain. The governing equations are set up to determine the stresses in the plastic zone. Numerical results from specific problems are analyzed and compared with those for plane stress state and other cases. A relationship between the crack model and K I-T theory is established in the case of small-scale yielding at the crack tip __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 6, pp. 44–55, June 2005.  相似文献   

15.
Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio ν at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle ϕ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of ϕ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2≤a/c≤1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded center-elliptical crack front field, and a two-parameter K-Tz principle is proposed. The project supported by the National Natural Science Foundation of China (50275073) The English text was polished by Keren Wang.  相似文献   

16.
An investigation is presented on the suitability and accuracy of a thermoelastic technique for the analysis of fatigue cracks. The stress intensity factor ranges ΔK I and ΔK II are determined from thermoelastic data recorded from around the tip of a sharp slot in a steel specimen under biaxial load, in order to assess the accuracy of the technique. ΔK I and ΔK II are determined to within 4% and 9% of a theoretical prediction, respectively. The results from a similar test on a fatigue crack under biaxial load are also presented. These show that thermoelastic stress analysis is a rapid and accurate way of analyzing mixed-mode fatigue cracks. A discussion is given on the potential of thermoelastic stress analysis of propagating cracks.  相似文献   

17.
The problem of determining the stress state of a plate with an inclined elliptical notch under biaxial loading is considered. The Kolosov-Muskhelishvili method is used to obtain an expression for the stress near the vertex of an inclined ellipse, whose particular case are expressions for the stress in the case of an inclined crack. The stress intensity factors K I and K II were determined experimentally by holographic interferometry in the case of extension of a plate with an inclined crack-like defect. The calculation results are compared with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 1, pp. 118–127, January–February, 2009.  相似文献   

18.
A closed-form solution is obtained for the problem of a mode-III interfacial edge crack between two bonded semi-infinite dissimilar elastic strips. A general out-of-plane displacement potential for the crack interacting with a screw dislocation or a line force is constructed using conformal mapping technique and existing dislocation solutions. Based on this displacement potential, the stress intensity factor (SIF, KIII) and the energy release rate (ERR, GIII) for the interfacial edge crack are obtained explicitly. It is shown that, in the limiting special cases, the obtained results coincide with the results available in the literature. The present solution can be used as the Green’s function to analyze interfacial edge cracks subjected to arbitrary anti-plane loadings. As an example, a formula is derived correcting the beam theory used in evaluation of SIF (KIII) and ERR (GIII) of bimaterials in the double cantilever beam (DCB) test configuration.  相似文献   

19.
In this paper, the characteristic properties ofv (y-direction displacement) field surrounding the tip of a mixed mode crack are studied. These properties can be used to evaluate the rigid body rotation of the crack tip, theK I SIF and the ratio ofK II SIF toK I.The authors employ a film to record the displacement information based on the technique of moire interferometry with sticking films. By using the data taken from the moire pattern and treating them with the damping least square method, all of the parameters of the crack can be obtained accurately.  相似文献   

20.
A combined theoretical and experimental study of the problem of crack growth in a plate subjected to unsymmetrical three-point bending was undertaken. The opening-modeK I and sliding-modeK II stress-intensity factors describing the local stress field around the crack tip were determined by a finite-element computer program. The crack growth was analyzed by the maximum circumferential stress and the minimum strain-energy density criteria. The critical loads for crack growth and the crack trajectories were determined both by theory and experiment. The experimental results corroborated the theoretical predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号