首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
This paper attempts to present an expository review of continued fraction expansion (CFE) based discretization schemes for fractional order differentiators defined in continuous time domain. The schemes reviewed are limited to infinite impulse response (IIR) type generating functions of first and second orders, although high-order IIR type generating functions are possible. For the first-order IIR case, the widely used Tustin operator and Al-Alaoui operator are considered. For the second order IIR case, the generating function is obtained by the stable inversion of the weighted sum of Simpson integration formula and the trapezoidal integration formula, which includes many previous discretization schemes as special cases. Numerical examples and sample codes are included for illustrations.  相似文献   

2.
The aim of this paper is to introduce a new algorithm for the discretization of second‐order elliptic operators in the context of finite volume schemes on unstructured meshes. We are strongly motivated by partial differential equations (PDEs) arising in computational fluid dynamics (CFD), like the compressible Navier–Stokes equations. Our technique consists of matching up a finite volume discretization based on a given mesh with a finite element representation on the same mesh. An inverse operator is also built, which has the desirable property that in the absence of diffusion, one recovers exactly the finite volume solution. Numerical results are also provided. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
给出了弹性力学三维问题的离散算子差分法 ,讨论离散算子差分法在三维问题中的特点 ,意在为该方法的进一步发展提供依据 ,为应用弱形式进行数值求解的研究提供参考。本文从弹性力学平衡方程更为一般的弱形式出发 ,给出了含边界参数的弱形式方程。由该方程不仅可以得到有限元法 ,还可得到离散算子差分法。给出了两个八结点块体单元 ,虽然单元中位移函数是非协调的 ,不需特殊处理便可保证离散格式收敛 ,并对单元位移有十分好的反映能力。  相似文献   

4.
Cover Image     
This paper presents a framework for incorporating arbitrary implicit multistep schemes into the lattice Boltzmann method. While the temporal discretization of the lattice Boltzmann equation is usually derived using a second-order trapezoidal rule, it appears natural to augment the time discretization by using multistep methods. The effect of incorporating multistep methods into the lattice Boltzmann method is studied in terms of accuracy and stability. Numerical tests for the third-order accurate Adams-Moulton method and the second-order backward differentiation formula show that the temporal order of the method can be increased when the stability properties of multistep methods are considered in accordance with the second Dahlquist barrier.  相似文献   

5.
In this paper, an exact formula for the integration of the constitutive equations of kinematic hardening material is presented. Its algorithms are simple and clear. For isotropic hardening or mixed hardening material, the formula is still an exact solution for the case of radial loading, and it is an approximate solution with reasonable accuracy for the case of non-radial loading. The computation results show that the procedure proposed in this paper improves both accuracy and efficiency of numerical integration schemes adopted widely in elastic-plastic finite element analysis.  相似文献   

6.
The present paper is concerned with the numerical solution of transient transport problems by means of spatial and temporal discretization methods. The generalized initial boundary value problem of various nonlinear transport phenomena like heat transfer or mass transport is discretized in space by p-finite elements. After finite element discretization, the resulting first-order semidiscrete balance has to be solved with respect to time. Next to the classical generalized-α integration method predicated on the Newmark approach and the evaluation at a generalized midpoint also implicit Runge–Kutta time integration schemes, are presented. Both families of finite difference-based integration schemes are derived for general first-order problems. In contrast to the above-mentioned algorithms, temporal discontinuous and continuous Galerkin methods evaluate the balance equation not at a selected time instant within the timestep, but in an integral sense over the whole time step interval. Therefore, the underlying semidiscrete balance and the continuity of the primary variables are weakly formulated within time steps and between time steps, respectively. Continuous Galerkin methods are obtained by the strong enforcement of the continuity condition as special cases. The introduction of a natural time coordinate allows for the application of standard higher-order temporal shape functions of the p-Lagrange type and the well-known Gau?–Legendre quadrature of associated time integrals. It is shown that arbitrary order accurate integration schemes can be developed within the framework of the proposed temporal p-Galerkin methods. Selected benchmark analyses of calcium diffusion demonstrate the properties of all three methods with respect to non-smooth initial or boundary conditions. Furthermore, the robustness of the present time integration schemes is also demonstrated for the highly nonlinear reaction–diffusion problem of calcium leaching, including the pronounced changes of the reaction term and non-smooth changes of Dirichlet boundary conditions of calcium dissolution.  相似文献   

7.
In this paper, the flow/acoustics splitting method for predicting flow‐generated noise is further developed by introducing high‐order finite difference schemes. The splitting method consists of dividing the acoustic problem into a viscous incompressible flow part and an inviscid acoustic part. The incompressible flow equations are solved by a second‐order finite volume code EllipSys2D/3D. The acoustic field is obtained by solving a set of acoustic perturbation equations forced by flow quantities. The incompressible pressure and velocity form the input to the acoustic equations. The present work is an extension of our acoustics solver, with the introduction of high‐order schemes for spatial discretization and a Runge–Kutta scheme for time integration. To achieve low dissipation and dispersion errors, either Dispersion‐Relation‐Preserving (DRP) schemes or optimized compact finite difference schemes are used for the spatial discretizations. Applications and validations of the new acoustics solver are presented for benchmark aeroacoustic problems and for flow over an NACA 0012 airfoil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this work we investigate the interplay of polynomial de-aliasing and sub-grid scale models for large eddy simulations based on discontinuous Galerkin discretizations. It is known that stability is a major concern when simulating underresolved turbulent flows with high order nodal collocation type discretizations. By changing the interpolatory character of the nodal collocation type discretization to a projection based discretization by increasing the number of quadrature points (polynomial de-aliasing), one is able to remove the aliasing induced stability problems. We focus on this effect and on the consequence for large eddy simulations with explicit subgrid scale models. Often, subgrid scale models have to achieve two possibly conflicting tasks in a single simulation: firstly stabilizing the numerics and secondly modeling the physical effect of the missing scales. Within a discontinuous Galerkin approach, it is possible to use either a fast (but potentially aliasing afflicted) nodal collocation discretization or a projection-based (but computationally costly) variant in combination with an explicit subgrid scale model. We use this framework to investigate the effect on the appropriate model parameter of a standard Smagorinsky subgrid scale model and of a Variational Multiscale Smagorinsky formulation. For this we first consider the 3-D viscous Taylor-Green vortex example to investigate the impact on the stability of the method and second the turbulent flow past a circular cylinder to investigate and compare the accuracy of the results. We show that the aliasing instabilities of collocative discretizations severely limit the choice of the model constant, in particular for high order schemes, while for de-aliased DG schemes, the closure model parameters can be chosen independently from the numerical scheme. For the cylinder flow, we also find that for the same model settings, the projection-based results are in better agreement with the reference DNS than those of the collocative scheme.  相似文献   

9.
In this paper we consider the impact that full spatial–temporal discretizations of reaction–diffusion systems have on the existence and uniqueness of travelling waves. In particular, we consider a standard second-difference spatial discretization of the Laplacian together with the six numerically stable backward differentiation formula methods for the temporal discretization. For small temporal time-steps and a fixed spatial grid-size, we establish some useful Fredholm properties for the operator that arises after linearizing the system around a travelling wave. In particular, we perform a singular perturbation argument to lift these properties from the natural limiting operator. This limiting operator is associated to a lattice differential equation, where space has been discretized but time remains continuous. For the backward-Euler temporal discretization, we also obtain travelling waves for arbitrary time-steps. In addition, we show that in the anti-continuum limit, in which the temporal time-step and the spatial grid-size are both very large, wave speeds are no longer unique. This is in contrast to the situation for the original continuous system and its spatial semi-discretization. This non-uniqueness is also explored numerically and discussed extensively away from the anti-continuum limit.  相似文献   

10.
A class of higher order compact (HOC) schemes has been developed with weighted time discretization for the two‐dimensional unsteady convection–diffusion equation with variable convection coefficients. The schemes are second or lower order accurate in time depending on the choice of the weighted average parameter μ and fourth order accurate in space. For 0.5?μ?1, the schemes are unconditionally stable. Unlike usual HOC schemes, these schemes are capable of using a grid aspect ratio other than unity. They efficiently capture both transient and steady solutions of linear and nonlinear convection–diffusion equations with Dirichlet as well as Neumann boundary condition. They are applied to one linear convection–diffusion problem and three flows of varying complexities governed by the two‐dimensional incompressible Navier–Stokes equations. Results obtained are in excellent agreement with analytical and established numerical results. Overall the schemes are found to be robust, efficient and accurate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号